Heterogeneity of small plasmids from halophilic archaea. 1993

A S Akhmanova, and V K Kagramanova, and A S Mankin
Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Russia.

Small multicopy plasmids in three strains of halophilic archaea, SB3, GRB, and GN101, were found to be present in a cell as a population of related but not identical sequences. Two types of heterogeneity were observed: macroheterogeneity, represented by two major plasmid sequence versions homologous to each other by 80%, and microheterogeneity, in which individual plasmids differ by one or a few nucleotide substitutions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

A S Akhmanova, and V K Kagramanova, and A S Mankin
February 1988, Nucleic acids research,
A S Akhmanova, and V K Kagramanova, and A S Mankin
February 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
A S Akhmanova, and V K Kagramanova, and A S Mankin
March 2008, Extremophiles : life under extreme conditions,
A S Akhmanova, and V K Kagramanova, and A S Mankin
June 2008, Environmental microbiology,
A S Akhmanova, and V K Kagramanova, and A S Mankin
October 2011, Journal of industrial microbiology & biotechnology,
A S Akhmanova, and V K Kagramanova, and A S Mankin
September 1994, Microbiologia (Madrid, Spain),
A S Akhmanova, and V K Kagramanova, and A S Mankin
December 2006, PloS one,
A S Akhmanova, and V K Kagramanova, and A S Mankin
June 2001, Journal of biotechnology,
A S Akhmanova, and V K Kagramanova, and A S Mankin
February 2010, Environmental microbiology,
A S Akhmanova, and V K Kagramanova, and A S Mankin
August 2003, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!