Structurally related class I and class II receptor protein tyrosine kinases are down-regulated by the same E3 protein coded for by human group C adenoviruses. 1993

E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970.

Receptor tyrosine kinases (RTKs) are grouped into subcategories based on shared sequence and structural features. Human group C adenoviruses down-regulate EGF receptors, which are members of the class I family of RTKs, during the early stages of infection. Adenovirus appears to utilize a nonsaturable intracellular pathway since it causes EGF-R down-regulation even in cells that significantly overexpress EGF-R. Adenovirus-induced down-regulation is mediated by a small hydrophobic molecule coded for by the E3 early transcription region that has recently been localized to plasma membrane. Here we examine intracellular trafficking of other RTKs in adenovirus-infected cells, to better understand the molecular basis for the action of the E3 protein. Although p185c-neu, which is a class I RTK closely related to the EGF receptor, is down-regulated in cells expressing physiological concentrations of this molecule, it is not down-regulated in tumor cell lines that significantly overexpress p185c-neu. Cell surface receptors for insulin and IGF1, which are class II RTKs, are also reduced in cells expressing the E3 protein, although to a slightly lesser extent than the EGF receptor. Moreover, whereas EGF receptors are degraded between 3- and 9-h postinfection, insulin and IGF1 receptors are degraded between 6- and 12-h postinfection under identical conditions. In contrast to the class I and class II RTKs, there is no difference in the expression of the class III receptors for PDGF and aFGF in cells infected with a virus with an intact E3 region versus a virus mutant with an internal deletion in the relevant E3 gene. These results suggest that the E3 protein provides an internalization and degradative sorting signal for some class I and class II RTKs, although down-regulation of class II RTKs is somewhat less efficient. Molecular recognition of class I and class II RTKs during adenovirus infection may not be due strictly to amino acid structure, however, since EGF-R but not p185c-neu is down-regulated in cells where it is significantly overexpressed.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011940 Receptor Aggregation Chemically stimulated aggregation of cell surface receptors, which potentiates the action of the effector cell. Aggregation, Receptor,Capping, Receptor,Receptor Capping
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
March 1990, Virology,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
July 1990, Biochemical and biophysical research communications,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
February 1992, Immunology and cell biology,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
May 1988, Biochemistry,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
April 1995, Virology,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
October 1987, FEBS letters,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
May 1998, Biochimica et biophysica acta,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
September 2017, Scientific reports,
E Kuivinen, and B L Hoffman, and P A Hoffman, and C R Carlin
January 1999, Advances in cancer research,
Copied contents to your clipboard!