Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures. 1993

D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
Institute of Biochemistry, Faculty of Medicine, University of Catania, Italy.

We have characterized the genomic response of astroglial cells to excitatory amino acids by using selective agonists and antagonists for the various receptor subtypes and by analyzing different primary response genes, such as members of the Fos (c-fos and fosB) and Jun (c-jun, junB, and junD) families, zif/268, and c-myc. A rapid and transient elevation of mRNA levels for c-fos, fosB, c-jun, junB, and zif/268 was observed after addition of glutamate to cultured astrocytes, whereas junD and c-myc expression was not affected. The level of AP-1 DNA binding activity, as measured by the electrophoretic mobility shift assay, also increased after addition of glutamate to cultured astrocytes. Glutamate-induced c-fos expression was not affected by the N-methyl-D-aspartate receptor antagonists MK-801 and D-2-amino-5-phosphonopentanoate, by the kainate/alpha-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA) receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), or by the broad-spectrum antagonist kynurenate. Kainate and AMPA were also effective in inducing primary response gene expression, and their actions were antagonized by kynurenate and DNQX but not by MK-801. 1S,3R-1-Aminocyclopentane-1,3-dicarboxylic acid, a selective agonist for the metabotropic glutamate receptor, induced primary response gene expression, but its action was not antagonized by different glutamate antagonists, including L-2-amino-3-phosphonopropionate. In conclusion, our data suggest that cultured astrocytes express both kainate/AMPA ionotropic receptors and metabotropic receptors coupled to the rapid and coordinated activation of different classes of transcriptional factor genes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016259 Genes, myc Family of retrovirus-associated DNA sequences (myc) originally isolated from an avian myelocytomatosis virus. The proto-oncogene myc (c-myc) codes for a nuclear protein which is involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Truncation of the first exon, which appears to regulate c-myc expression, is crucial for tumorigenicity. The human c-myc gene is located at 8q24 on the long arm of chromosome 8. L-myc Genes,N-myc Genes,c-myc Genes,myc Genes,v-myc Genes,L-myc Proto-Oncogenes,N-myc Proto-Oncogenes,c-myc Proto-Oncogenes,myc Oncogene,v-myc Oncogenes,Gene, L-myc,Gene, N-myc,Gene, c-myc,Gene, myc,Gene, v-myc,Genes, L-myc,Genes, N-myc,Genes, c-myc,Genes, v-myc,L myc Genes,L myc Proto Oncogenes,L-myc Gene,L-myc Proto-Oncogene,N myc Genes,N myc Proto Oncogenes,N-myc Gene,N-myc Proto-Oncogene,Oncogene, myc,Oncogene, v-myc,Oncogenes, myc,Oncogenes, v-myc,Proto-Oncogene, L-myc,Proto-Oncogene, N-myc,Proto-Oncogene, c-myc,Proto-Oncogenes, L-myc,Proto-Oncogenes, N-myc,Proto-Oncogenes, c-myc,c myc Genes,c myc Proto Oncogenes,c-myc Gene,c-myc Proto-Oncogene,myc Gene,myc Oncogenes,v myc Genes,v myc Oncogenes,v-myc Gene,v-myc Oncogene
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun

Related Publications

D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
January 1988, Neurochemistry international,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
January 1992, Brain research. Molecular brain research,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
November 1993, European journal of pharmacology,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
August 1993, Journal of neurochemistry,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
June 1993, British journal of pharmacology,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
May 1985, Neurochemical research,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
January 1990, Cellular signalling,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
June 1996, Arzneimittel-Forschung,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
April 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D F Condorelli, and P Dell'Albani, and C Amico, and L Kaczmarek, and F Nicoletti, and K Lukasiuk, and A M Stella
July 1989, Journal of neuroscience methods,
Copied contents to your clipboard!