Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. 1993

H W Moon, and T O Bunn
National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010.

Fimbrial vaccines are routinely given parenterally to pregnant cattle, sheep and swine to protect suckling newborn calves, lambs and pigs against enterotoxigenic Escherichia coli (ETEC) infections. Such vaccines are practical and effective because (1) most fatal ETEC infections in farm animals occur in the early neonatal period when the antibody titres in colostrum and milk are highest; (2) more than 90% of the ETEC in farm animals belong to a small family of fimbrial antigen types; (3) fimbriae consist of good protein antigens on the bacterial surface where they are readily accessible to antibody; (4) fimbriae are required for a critical step (adhesion-colonization) early in the pathogenesis of the disease. ETEC infections continue to be a significant clinical problem in farm animals in spite of extensive use of fimbriae-based vaccines. Definitive data on the efficacy of the commercial vaccines in field use are not available. The prevailing perception among animal health professionals is that the vaccines are effective, that the problem occurs chiefly among non-vaccinated animals, and that in some herds vaccination moves peak prevalence of disease from the first to the second or third week after birth, when mortality is lower. It has been suggested that extensive use of vaccines will rapidly select for the emergence of novel or previously low prevalence fimbrial antigen types. There is no evidence that this has happened after a decade of routine vaccine use in the United States. However, there is no active direct surveillance for such emergence.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008297 Male Males
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D003967 Diarrhea An increased liquidity or decreased consistency of FECES, such as running stool. Fecal consistency is related to the ratio of water-holding capacity of insoluble solids to total water, rather than the amount of water present. Diarrhea is not hyperdefecation or increased fecal weight. Diarrheas
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

H W Moon, and T O Bunn
January 1999, Veterinary research,
H W Moon, and T O Bunn
July 2013, The Cochrane database of systematic reviews,
H W Moon, and T O Bunn
August 2008, Expert review of vaccines,
H W Moon, and T O Bunn
May 1978, Nihon rinsho. Japanese journal of clinical medicine,
H W Moon, and T O Bunn
March 2019, Current infectious disease reports,
H W Moon, and T O Bunn
January 2005, Current opinion in gastroenterology,
H W Moon, and T O Bunn
May 2014, Expert review of vaccines,
H W Moon, and T O Bunn
September 1958, Lancet (London, England),
H W Moon, and T O Bunn
February 2020, The Lancet. Infectious diseases,
H W Moon, and T O Bunn
October 2023, Current opinion in immunology,
Copied contents to your clipboard!