Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. 1993

W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK.

Investigation of genetic changes in tumours by loss of heterozygosity (LOH) is a powerful technique for identifying chromosomal regions that may contain tumour suppressor genes. LOH has been described on chromosome 6 in ovarian carcinoma using restriction fragment length polymorphism analysis with a small number of probes. We studied 29 ovarian carcinomas with 19 probes mapping to chromosome 6. Sixteen of the 29 tumours showed LOH on 6q (55%). Of these 16, 63% showed loss of all informative markers on that arm. One tumour showed loss of 6q24-qter, localising the putative tumour suppressor gene to that region. Loss on 6p was 28% overall. However, using three dinucleotide repeat primer pairs from 6p to study LOH in seven selected tumours, LOH was demonstrated at both 6p22.3-pter and at 6p12-6p22. These results confirm that 6q harbours a tumour suppressor gene of relevance to ovarian carcinoma and suggest that there may also be a similar gene(s) on 6p. By Southern analysis, there was no evidence of genomic rearrangements of the oestrogen receptor gene, located at 6q25.1. LOH on 6q was more common in high than low grade tumours. The relevance of our findings to previous work in ovarian cancer and other solid tumours is discussed.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002896 Chromosomes, Human, Pair 6 A specific pair GROUP C CHROMSOMES of the human chromosome classification. Chromosome 6
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene

Related Publications

W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
January 2001, Zhonghua yi xue za zhi,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
May 1993, International journal of cancer,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
May 1993, Hepatology (Baltimore, Md.),
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
July 1997, Gynecologic oncology,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
March 1989, Cancer research,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
August 2000, Molecular pathology : MP,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
April 1998, Gan to kagaku ryoho. Cancer & chemotherapy,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
October 1999, Human immunology,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
October 1992, International journal of cancer,
W D Foulkes, and J Ragoussis, and G W Stamp, and G J Allan, and J Trowsdale
February 1993, British journal of cancer,
Copied contents to your clipboard!