Effects of NMDA receptor antagonists in squirrel monkeys trained to discriminate the competitive NMDA receptor antagonist NPC 12626 from saline. 1993

L H Gold, and R L Balster
Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613.

Because excitatory amino acids have been implicated in several physiological phenomena, antagonists of excitatory amino acid function may have significant therapeutic potential as anticonvulsants, neuroprotectants and anxiolytics. Drug discrimination procedures in animals have proven useful to compare and contrast the behavioral effects of site-selective NMDA antagonists. In the only previous study using a competitive NMDA antagonist as a training drug, rats were trained to discriminate NPC 12626 (2-amino-4,5-(1,2-cyclohexyl)-7-phosphonohepatanoic acid) from nondrug. The major goal of the present study was to establish and characterize a nonhuman primate model of NPC 12626 discrimination. Adult male squirrel monkeys were trained to discriminate NPC 12626 from saline under a two-lever fixed ratio-30 schedule of food reinforcement. The monkeys required between 80 and 120 training sessions to acquire this discrimination after the training dose had been raised from 3 to 20 mg/kg i.m. The competitive NMDA antagonists CGP 37849 (D,L-(E)-2-amino-4-methyl-5- phosphono-3-pentanoic acid) and CPPene (D-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid) substituted completely for NPC 12626, while the potent noncompetitive NMDA antagonist, dizocilpine (MK-801), did not. These results reflect a profile of discriminative stimulus effects which support that observed in rats and establish a primate model for use in further study of the behavioral effects of the competitive NMDA antagonists.

UI MeSH Term Description Entries
D008297 Male Males
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys
D015763 2-Amino-5-phosphonovalerate The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. 2-Amino-5-phosphonopentanoic Acid,2-Amino-5-phosphonovaleric Acid,2-APV,2-Amino-5-phosphonopentanoate,5-Phosphononorvaline,d-APV,dl-APV,2 Amino 5 phosphonopentanoate,2 Amino 5 phosphonopentanoic Acid,2 Amino 5 phosphonovalerate,2 Amino 5 phosphonovaleric Acid,5 Phosphononorvaline
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016291 Dizocilpine Maleate A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects. Dizocilpine,MK-801,MK 801,MK801

Related Publications

L H Gold, and R L Balster
November 1989, The Journal of pharmacology and experimental therapeutics,
L H Gold, and R L Balster
January 1990, Progress in clinical and biological research,
L H Gold, and R L Balster
January 2001, Pharmacology, biochemistry, and behavior,
L H Gold, and R L Balster
July 1989, The Journal of pharmacology and experimental therapeutics,
L H Gold, and R L Balster
January 1989, Psychopharmacology,
Copied contents to your clipboard!