Interleukin-4 protects double-negative and CD4 single-positive thymocytes from dexamethasone-induced apoptosis. 1993

G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
Instituto di Farmacologia Medica, Perugia University Medical School, Italy.

Glucocorticoid hormones (GCH) and anti-CD3 monoclonal antibodies (MoAbs) induce in mouse thymocytes and T-cell tumor lines an active process of cell death called apoptosis. Interleukins (IL), including IL-1 and IL-2, have been reported to inhibit such apoptosis. In this study we show that IL-4 also reduced the DNA fragmentation characteristic of dexamethasone (DEX)-induced apoptosis in thymocytes. This effect, studied in both time-course and dose-response experiments, was also detected at low IL-4 concentrations (1 U/mL) and against high DEX levels (10(-7) mol/L). The effect of IL-4 was blocked by an anti-IL-4 but not by an anti-IL-1 alpha MoAb, and was thus both specific and direct. Phenotypic analysis showed that IL-4 protects predominantly CD4-CD8- and CD4+CD8- cells. Our findings suggest that intrathymic T-cell development may be influenced by IL-4.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D016827 CD8 Antigens Differentiation antigens found on thymocytes and on cytotoxic and suppressor T-lymphocytes. T8 antigens are members of the immunoglobulin supergene family and are associative recognition elements in MHC (Major Histocompatibility Complex) Class I-restricted interactions. Antigens, CD8,Leu-2 Antigens,T8 Antigens, T-Cell,CD8 Antigen,Antigen, CD8,Antigens, Leu-2,Antigens, T-Cell T8,Leu 2 Antigens,T-Cell T8 Antigens,T8 Antigens, T Cell
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
January 2002, Experimental cell research,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
January 1991, Immunology,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
February 2019, Journal of immunology (Baltimore, Md. : 1950),
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
November 2006, The Journal of pharmacology and experimental therapeutics,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
September 2000, European journal of immunology,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
November 2002, Nature reviews. Immunology,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
April 2013, Immunology,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
November 2001, Vaccine,
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
December 2004, Journal of immunology (Baltimore, Md. : 1950),
G Migliorati, and I Nicoletti, and M C Pagliacci, and L D'Adamio, and C Riccardi
January 2013, Immunology and cell biology,
Copied contents to your clipboard!