Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. 1975

R H Blanks, and M S Estes, and C H Markham

The physiologic response of first-order vestibular canal neurons, recorded within the internal auditory canal with glass microelectrodes, was studied in anesthetized cats. Neurons from all three canals were subjected to velocity trapezoidal rotations about the canal axis, and about different axes extending up to 90 degrees on either side of the canal axis in "roll" and 30 degrees on either side of "pitch." Each cell examined exhibited a spontaneous discharge and responded to constant angular acceleration in a fashion predictable from the direction of the in-plane acceleration vector and the known receptor hair cell polarization. Under conditions of prolonged constant acceleration, (5 degrees/s2 for 40 s) about 30% of the units which could be classified showed adaptation, 55% did not, and 14%, termed reverse adapting cells, demonstrated a fast rise followed by a slower, continual increase during stimulation. Secondary responses (undershoot or overshoot) were noted in most adapting neurons, but were absent in the reverse adapting group. Adapting neurons were distinguished from the nonadapting group by significantly lower resting rates, more irregular interspike-interval distributions, and greater sensitivity to acceleration. When compared with nonadapting neurons, reverse adapting cells had higher spontaneous rates, less irregular spike intervals, and higher sensitivities. The mean canal sensitivity to angular acceleration for all cells was 2 spikes . s-1/deg . s-2 (range 0.3-7.4 spikes . s-1/deg . s-2). Significant differences in mean sensitivity values between canal neurons were demonstrated, with those from the anterior being the most sensitive, followed by the posterior and horizontal canals, respectively. Time constants for all canals governing the transitory rise (or fall) in rate with constant acceleration averaged 3.8 s. Small differences in mean values were noted between canals but these were not significant. Incremental time constants were found to be slightly but significantly longer (mean = 3.9 s) than decremental time constants (mean = 3.6 s). Some cells showed different tine constants to many trials of one stimulus as well as to different levels of stimulus. Most canal unitary responses were approximately linearly related to stimulus magnitudes over the range of 2-18 degrees/s2. This being the case, the angle between the canal plane and plane of stimulus become the main determinant in the first-order neural response. Here, a linear cosine relationship descriged the three-dimentionsal unitary response curve: maximum canal response was elicited with rotation about the canal axis, while no response was evoked with rotation about an axis approximately 90 degrees to canal axis. Between these two extremes, the response of a cell was determined by the cosine of the angle between the canala axis and the axis of rotation.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011187 Posture The position or physical attitude of the body. Postures
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006112 Gravitation Acceleration produced by the mutual attraction of two masses, and of magnitude inversely proportional to the square of the distance between the two centers of mass. It is also the force imparted by the earth, moon, or a planet to an object near its surface. (From NASA Thesaurus, 1988) G Force,Gravistimulation,Gravity,Force, G,G Forces,Gravities
D000054 Acceleration An increase in the rate of speed. Accelerations
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations

Related Publications

R H Blanks, and M S Estes, and C H Markham
February 1986, Nihon Jibiinkoka Gakkai kaiho,
R H Blanks, and M S Estes, and C H Markham
August 1976, Brain research,
R H Blanks, and M S Estes, and C H Markham
April 1978, Experimental brain research,
R H Blanks, and M S Estes, and C H Markham
January 1986, Experimental brain research,
R H Blanks, and M S Estes, and C H Markham
October 1979, Experimental brain research,
R H Blanks, and M S Estes, and C H Markham
January 1978, The Annals of otology, rhinology, and laryngology,
R H Blanks, and M S Estes, and C H Markham
January 1983, Bollettino della Societa italiana di biologia sperimentale,
R H Blanks, and M S Estes, and C H Markham
January 1977, Neuroscience,
Copied contents to your clipboard!