An olfactory projection area in orbitofrontal cortex of the monkey. 1975

T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi

An olfactory projection area was studied in monkeys anesthetized with Nembutal. 1. Evoked potentials were recorded when the olfactory bulb (OB) was electrically stimulated in the lateroposterior portion of the orbitofrontal cortex (LPOF). However, those potentials disappeared when the anterior pyriform cortex (AP) (probably together with the medial portion of the amygdala (MA)) was aspirated or electrically destroyed. 2. In nearly the entire hypothalamic region, evoked potentials were recorded by the same stimulation of the OB. When the hypothalamic region was stimulated, evoked potentials were recorded in the LPOF. 3. The evoked potentials in the LPOF due to the OB stimulation never disappeared even when the thalamus was extensively aspirated or destroyed electrically, but they did disappear when the anterolateral and dorsoposterior portions of the hypothalamus were absorbed or electrocoagulated. 4. Evoked potentials in the mediodorsal nucleus (MD) of the thalamus were recorded when the OB was stimulated. When this nucleus was stimulated, evoked potentials were observed in the broad extent of the orbitofrontal cortex anterior to the LPOF, but never in the LPOF itself. 5. Monkeys were conditioned to discriminate two odors. When the LPOF was removed, such ability strikingly decreased; but when other areas in the prefrontal cortex were removed, the ability decreased only slightly. 6. It was concluded that there exists an olfactory pathway from the OB to the LPOF through the AP (and probably the MA) and the hypothalamus, but none through the thalamus, and that the LPOF plays an important role in the discrimination of odors. 7. It was proved that the entorhinal cortex (ER) is neither located as an intermediate olfactory area nor is it situated as a higher area than the LPOF in the newly found olfactory pathway stated above. It may be a link between the high olfactory area and the limbic system.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
January 1979, Neuroscience,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
September 1975, Journal of neurophysiology,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
April 1996, Journal of neurophysiology,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
April 1985, Brain research,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
January 2013, Frontiers in psychology,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
May 1996, Journal of neurophysiology,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
April 1980, Proceedings of the Royal Society of London. Series B, Biological sciences,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
January 1983, Experimental brain research,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
October 2010, Psychological science,
T Tanabe, and H Yarita, and M Iino, and Y Ooshima, and S F Takagi
November 1985, Brain research,
Copied contents to your clipboard!