Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. 1993

M H Millan, and A G Chapman, and B S Meldrum
Department of Neurology, Institute of Psychiatry, London, UK.

Extracellular levels of aspartate, glutamate and glutamine were monitored by microdialysis in the dorsal hippocampus of freely moving rats following the administration of a convulsant dose of pilocarpine (400 mg/kg, i.p.). Rats were either pretreated with the glutamate uptake inhibitor, 1-trans-pyrrolidine-2,4-dicarboxylic acid (PDC, 1 mM in the perfusion medium, -25 min), or received pilocarpine directly. All rats injected with pilocarpine (with or without PDC pretreatment) developed limbic seizures (latency 15.4 +/- 2.4 min). Without PDC pretreatment there were no significant changes in extracellular levels of aspartate, glutamate and glutamine following pilocarpine administration until the onset of limbic seizures when glutamine levels fell by 35%. Following PDC pretreatment there were large and sustained increases in extracellular hippocampal aspartate (250%) and glutamate (55%) levels, but no significant change in the glutamine level. When pilocarpine was administered to this group of rats, there were further selective, significant, transient increases in the extracellular levels of aspartate (31%) and glutamate (18%) which preceded the onset of seizures. Aspartate and glutamate levels were not significantly increased (relative to PDC controls) during seizures. The conditions for pilocarpine-induced increases in aspartate and glutamate release were established in parallel groups of anaesthetised rats where pilocarpine was administered via a microdialysis probe in the dorsal hippocampus. Following the infusion of 10 mM pilocarpine there were large and rapid increases in the levels of aspartate (143%) and glutamate (179%), which were completely abolished by the absence of calcium in the perfusion medium, or by the presence of atropine (20 mM) or tetrodotoxin (1 microM).

UI MeSH Term Description Entries
D008297 Male Males
D010862 Pilocarpine A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. Isopilocarpine,Isoptocarpine,Ocusert,Pilocarpine Hydrochloride,Pilocarpine Mononitrate, (3S-cis)-Isomer,Pilocarpine Nitrate,Pilocarpine, Monohydrochloride, (3S-cis)-Isomer,Salagen,Hydrochloride, Pilocarpine,Nitrate, Pilocarpine
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D003998 Dicarboxylic Acids Acyclic acids that contain two carboxyl groups and have the formula HO2C-R-CO2H, where R may be an aromatic or aliphatic group. Acids, Dicarboxylic
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M H Millan, and A G Chapman, and B S Meldrum
August 2011, Fundamental & clinical pharmacology,
M H Millan, and A G Chapman, and B S Meldrum
January 1997, European journal of pharmacology,
M H Millan, and A G Chapman, and B S Meldrum
August 1987, Journal of neurochemistry,
M H Millan, and A G Chapman, and B S Meldrum
June 2011, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
M H Millan, and A G Chapman, and B S Meldrum
December 1995, Neuroscience letters,
M H Millan, and A G Chapman, and B S Meldrum
January 2011, Arquivos de neuro-psiquiatria,
M H Millan, and A G Chapman, and B S Meldrum
January 2010, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!