1H nuclear magnetic resonance spectroscopy study of cerebral glutamate in an ex vivo brain preparation of guinea pig. 1993

T R Pirttilä, and J M Hakumäki, and R A Kauppinen
Department of Biochemistry and Biotechnology, A. I. Virtanen Institute, University of Kuopio, Finland.

Cerebral glutamate was monitored in a superfused cerebral cortical preparation by 1H NMR spectroscopy using a semiselective spin-echo sequence N-acetyl aspartate (NAA) as an internal concentration reference. During controlled metabolic conditions, the cerebral 1H NMR-detected glutamate-to-NAA ratio was approximately 20-30% lower than expected from the ratio of neutralized perchloric acid extracts of the preparations. Inhibition of respiration in the presence of glucose did not change the 1H NMR glutamate-to-NAA ratio in brain slice preparation. In contrast, either complete depletion of ATP during cyanide poisoning together with 0 mM glucose, anoxia in the absence of glucose, or treatment with nigericin or with a protonophore, carbonyl cyanide-m-fluorophenylhydrazone, increased 1H NMR-detected glutamate/NAA in the cerebral preparations without a change in the relative and absolute concentration ratios determined from the tissue acid extracts. Spin-spin relaxation times of glutamate and NAA peaks in anoxic slices were 749 +/- 89 and 729 +/- 94 ms, respectively, and thus, the portion of glutamate that could not be detected by 1H NMR was quantified in absolute terms. It was calculated that an increase in the glutamate-to-NAA ratio from 0.55 +/- 0.02 to 0.67 +/- 0.02 during aglycemic anoxia corresponded to some 6 mmol/kg of tissue dry weight of glutamate from the total concentration of 28 mmol/kg dry weight. It is suggested that this 22% of total glutamate pool is present in a noncytoplasmic compartment during controlled metabolic state.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009550 Nigericin A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. (From Merck Index, 11th ed) Epinigericin,Pandavir
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids

Related Publications

T R Pirttilä, and J M Hakumäki, and R A Kauppinen
February 2004, NMR in biomedicine,
T R Pirttilä, and J M Hakumäki, and R A Kauppinen
January 1995, Journal of neurochemistry,
T R Pirttilä, and J M Hakumäki, and R A Kauppinen
August 1983, Proceedings of the National Academy of Sciences of the United States of America,
T R Pirttilä, and J M Hakumäki, and R A Kauppinen
October 1999, Journal of neurosurgery,
T R Pirttilä, and J M Hakumäki, and R A Kauppinen
January 2018, Methods in molecular biology (Clifton, N.J.),
T R Pirttilä, and J M Hakumäki, and R A Kauppinen
February 1980, Journal of biochemistry,
Copied contents to your clipboard!