Effects of PACAP on morphologically identified myenteric neurons in guinea pig small bowel. 1993

F L Christofi, and J D Wood
Department of Physiology, College of Medicine, Ohio State University, Columbus 43210-1218.

Intracellular microelectrodes were used to examine the actions of pituitary adenylate cyclase-activating peptide (PACAP) on morphologically identified myenteric neurons and glial cells of the guinea pig small bowel. PACAP-27 and PACAP-38 evoked excitatory responses in 96% of after hyperpolarizing (AH)/type 2 neurons. The half-maximal concentration for PACAP-27 was 1.5 nM. The responses consisted of membrane depolarization in association with increased input resistance, suppression of hyperpolarizing afterpotentials, and repetitive spike discharge. Forskolin mimicked the action of PACAP in all AH/type 2 neurons. PACAP excited 36% of S/type 1 neurons. Most of the AH/type 2 neurons had Dogiel II morphology, whereas the S/type 1 neurons were uniaxonal with morphology characteristics of Dogiel I or filamentous neurons. No glial cells responded to PACAP. A selective A1 adenosine receptor agonist blocked the excitatory action of PACAP, and this was reversed by a selective A1 antagonist. The results suggest that excitatory PACAP receptors and inhibitory adenosine A1 receptors are linked to adenylate cyclase in AH/type 2 myenteric neurons.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008297 Male Males
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011979 Receptors, Pituitary Hormone Cell surface proteins that bind pituitary hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Since many pituitary hormones are also released by neurons as neurotransmitters, these receptors are also found in the nervous system. Pituitary Hormone Receptors,Receptors, Pituitary Hormones,Pituitary Hormones Receptors
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

F L Christofi, and J D Wood
July 1997, The American journal of physiology,
F L Christofi, and J D Wood
March 1992, The American journal of physiology,
F L Christofi, and J D Wood
March 1999, Neuroscience,
F L Christofi, and J D Wood
October 1989, Neuroscience letters,
F L Christofi, and J D Wood
June 1992, The American journal of physiology,
F L Christofi, and J D Wood
November 1996, The Journal of physiology,
F L Christofi, and J D Wood
March 2005, Autonomic neuroscience : basic & clinical,
Copied contents to your clipboard!