Control of oxidative phosphorylation in AS-30D hepatoma mitochondria. 1993

F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
Departamento de Bioquímica, Instituto Nacional de Cardiología, México D.F.

1. The distribution of control of the rate of state 3 respiration of AS-30D hepatoma mitochondria was determined. 2. The ATP/ADP carrier (flux control coefficient, Ci = 0.70) and the ATP synthase (Ci = 0.19-0.32) were the only steps that exerted significant control on the phosphorylating flux supported by either glutamate+malate, pyruvate+malate, or succinate+rotenone. This is in contrast to liver mitochondria where the control is distributed between several steps. 3. It is suggested that this pattern of control of phosphorylation in hepatoma mitochondria is a consequence of a lower content of adenine nucleotides or a higher content of Mg2+.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine

Related Publications

F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
December 1984, Cancer research,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
November 1976, Biochimica et biophysica acta,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
August 2008, Toxicology and applied pharmacology,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
July 1986, Cancer research,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
May 1999, Placenta,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
July 1994, Molecular and cellular biochemistry,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
August 1993, Archives of biochemistry and biophysics,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
February 1952, Cancer research,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
December 1960, Biochimica et biophysica acta,
F J López-Gómez, and M E Torres-Márquez, and R Moreno-Sánchez
January 1979, Methods in enzymology,
Copied contents to your clipboard!