GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase. 1993

X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510.

When purified rat liver ornithine transcarbamylase (OTC), a trimer of 36 kDa subunits, was denatured in 6 M guanidine hydrochloride and then diluted 50-100-fold, no activity was recovered, and the OTC subunits aggregated. In contrast, when the chaperonin groEL was included in the dilution buffer, OTC did not aggregate but instead comigrated in a sucrose density gradient with the groEL oligomer, indicating that a complex had been formed. Upon addition of the cochaperonin groES and ATP to the isolated OTC-groEL complex, OTC monomers were folded, released, and assembled into active trimer. Neither groES nor ATP alone was sufficient to release active OTC from groEL. The extent of recovery of activity was proportional to the concentration of the complex, reaching approximately 80-90% at monomer concentrations above 0.6 microM. At low complex concentrations, kinetic studies revealed an initial lag in the reconstitution reaction, suggesting that assembly is the rate-limiting step under these conditions. We could trap folded, released, inactive OTC monomers at early times that assembled into active trimers with longer incubation. A nonhydrolyzable ATP analog could release bound OTC from groEL in the presence of groES, but the OTC monomers were not competent for assembly. These data show that recovery of OTC activity in vitro can be efficiently directed by the bacterial chaperonins in the presence of ATP and suggest that the mechanism of reconstitution involves ATP and groES-dependent folding and release of OTC monomers from groEL, followed by spontaneous assembly of trimers.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009954 Ornithine Carbamoyltransferase A urea cycle enzyme that catalyzes the formation of orthophosphate and L-citrulline (CITRULLINE) from CARBAMOYL PHOSPHATE and L-ornithine (ORNITHINE). Deficiency of this enzyme may be transmitted as an X-linked trait. EC 2.1.3.3. Ornithine Transcarbamylase,Ornithine Carbamylphosphate Transferase,Carbamoyltransferase, Ornithine,Carbamylphosphate Transferase, Ornithine,Transcarbamylase, Ornithine,Transferase, Ornithine Carbamylphosphate
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
May 2006, Chemical reviews,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
April 1999, Cell,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
December 1993, FEBS letters,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
January 1997, Virology,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
January 2000, Methods in molecular biology (Clifton, N.J.),
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
November 2008, The Journal of biological chemistry,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
April 2002, Biochemistry,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
August 2001, Nature structural biology,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
May 1994, The Journal of biological chemistry,
X Zheng, and L E Rosenberg, and F Kalousek, and W A Fenton
April 1998, Biochemistry. Biokhimiia,
Copied contents to your clipboard!