Three distinct nuclear protein binding sites in the promoter of the murine multidrug resistance mdr1b gene. 1993

L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461.

Multidrug resistance in mammalian cells is often associated with the overproduction of a membrane glycoprotein, P-glycoprotein, that is encoded by mdr genes. Multidrug resistance cell lines selected with either vinblastine, colchicine, or taxol from the drug-sensitive murine macrophage-like cell line J774.2 overexpress the mdr1a and/or mdr1b genes, and overproduce P-glycoprotein. To elucidate the mechanisms of mdr1b gene expression, the mdr1b 5'-flanking sequences have been isolated from a normal mouse liver genomic library and analyzed by gel shift and DNase I footprinting assays. These analyses have demonstrated three nuclear protein binding sites, from -82 to -59 (site 1), from -123 to -101 (site 2), and from -272 to -249 (site 3), which interact with proteins present in nuclear extracts from both sensitive and resistant cells. Although site 1 contains a partially conserved AP-2 consensus sequence, our results indicate that the nuclear protein binding to site 1 is not AP-2 protein. The sequence of site 2 is conserved in the murine mdr1a, human mdr1, and hamster pgp1 promoters. Such conservation suggests that this sequence may have an important role in mdr gene expression. The use of a transient chloramphenicol acetyltransferase expression vector containing the basal promoter for herpes simplex virus thymidine kinase (tkCAT) and either site 1 or site 2 or both revealed that the sequences of sites 1 and 2 enhanced tkCAT activity. DNase I footprinting analyses demonstrated that site 3 is recognized by human AP-1 protein, indicating that the nuclear protein binding to this site is an AP-1-like protein. These observations suggest that mdr1b gene expression is mediated by preexisting transcription factors present in sensitive and resistant cells.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
April 1993, The Journal of biological chemistry,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
January 1996, DNA and cell biology,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
July 1997, DNA and cell biology,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
April 1985, Science (New York, N.Y.),
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
October 1995, The Journal of biological chemistry,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
February 1999, The Journal of biological chemistry,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
October 2003, Cellular and molecular life sciences : CMLS,
L Yu, and D Cohen, and R L Piekarz, and S B Horwitz
April 1997, The Journal of biological chemistry,
Copied contents to your clipboard!