Long-term potentiation during whole-cell recording in rat hippocampal slices. 1993

K Kato, and D B Clifford, and C F Zorumski
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.

Factors involved in the production of long-term potentiation in the CA1 region of rat hippocampal slices were examined using whole-cell voltage clamp recordings. The pairing of postsynaptic membrane depolarization with tetanic stimulation produced a reliable long-lasting enhancement of synaptic currents provided that the pairing was performed within 15 min after establishing intracellular contact. This time could be extended to 30 min by including adenosine triphosphate and guanosine triphosphate in the recording pipette. Once established, the potentiation persisted for 3 h or more. The washout of long-term potentiation generating ability was not correlated with a rundown in baseline synaptic currents or in the N-methyl-D-aspartate receptor-mediated component of synaptic responses, but followed a time course similar to the loss of calcium spikes. Long-term potentiation could be reliably produced by depolarizing the postsynaptic membrane to -40 or -20 mV during the tetanus, but decreased when the membrane was held at membrane potentials greater than 0 mV. At -20 mV, 50 microM 2-amino-5-phosphonovalerate blocked the potentiation but this agent was ineffective at +40 mV. In contrast, 50 microM verapamil, a calcium channel blocker, failed to alter long-term potentiation at -20 mV but blocked the enhancement at +40 mV. These results suggest that whole-cell recording causes a washout of postsynaptic factors important in the initiation of long-term potentiation. However, these factors are less important in maintaining the potentiation. Furthermore, depending on the postsynaptic membrane potential during tetanic stimulation, voltage-gated calcium channels contribute to CA1 long-term potentiation.

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

K Kato, and D B Clifford, and C F Zorumski
May 1992, Brain research,
K Kato, and D B Clifford, and C F Zorumski
August 2002, Journal of neurophysiology,
K Kato, and D B Clifford, and C F Zorumski
December 1991, European journal of pharmacology,
K Kato, and D B Clifford, and C F Zorumski
February 1997, Brain research,
K Kato, and D B Clifford, and C F Zorumski
December 1983, Proceedings of the National Academy of Sciences of the United States of America,
K Kato, and D B Clifford, and C F Zorumski
August 2004, Bulletin of experimental biology and medicine,
K Kato, and D B Clifford, and C F Zorumski
July 1989, Pharmacology, biochemistry, and behavior,
K Kato, and D B Clifford, and C F Zorumski
October 2006, The Journal of physiology,
Copied contents to your clipboard!