Expression of the Hox 2.2 homeobox gene in murine embryonic epidermis. 1993

C H Mathews, and K Detmer, and H J Lawrence, and C Largman
Department of Internal Medicine, UC Davis School of Medicine, CA.

The expression of the Hox 2.2 gene was studied in mouse fetal skin by in situ hybridization with an antisense RNA probe derived from the homeobox region of this gene. In contrast to the expression of Hox 2.2 in spinal cord, which is strongest in 11-day embryos, and is greatly diminished by day 14 and day 17, the signal for Hox 2.2 in skin could be not be detected in 11-day epidermis, was barely detectable on day 14, became strong on day 17, and decreased in new-born animals (day 19). RNase protection assays using Hox 2.2 homeobox-containing and 3' flanking region probes confirmed that the signals detected in 17-day fetal skin by in situ hybridization represent Hox 2.2 transcripts, and that the message is expressed throughout the day 15 to day 18 period during which the epidermis is undergoing terminal differentiation. RNase protection analysis also revealed two alternatively spliced forms of the Hox 2.2 mRNA are present throughout fetal skin development. Northern gel analysis of 17-day fetal skin using a Hox 2.2 homeobox-containing probe at high stringency showed two bands of 1.6 and 1.9 kb, respectively. The 1.9 kb band was greatly enhanced by hybridization at reduced stringency, suggesting the expression of additional homeobox genes with homology to Hox 2.2. These results suggest that the Hox 2.2 homeobox gene plays a role in epidermal development.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

C H Mathews, and K Detmer, and H J Lawrence, and C Largman
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
February 1991, Nucleic acids research,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
June 1993, The International journal of developmental biology,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
October 1992, Development (Cambridge, England),
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
November 1990, Development (Cambridge, England),
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
June 1990, Development (Cambridge, England),
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
December 1992, The Journal of experimental zoology,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
September 1992, Biochimica et biophysica acta,
C H Mathews, and K Detmer, and H J Lawrence, and C Largman
May 1988, The EMBO journal,
Copied contents to your clipboard!