Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. 1993

H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
Institute of Cell Physiology, National A. University of Mexico, Mexico City.

In this work we examined the time course and the amount released, by hyposmolarity, for the most abundant free amino acids (FAA) in rat brain cortex astrocytes and neurons in culture. The aim was to evaluate their contribution to the process of cell volume regulation. Taurine, glutamate, and D-aspartate in the two types of cells, beta-alanine in astrocytes and GABA in neurons were promptly released by hyposmolarity, reaching a maximum within 1-2 min. after an osmolarity change. A substantial amount of the intracellular pool of these amino acids was mobilized in response to hyposmolarity. The amount released in media with osmolarity reduced from 300 mOsm to 150 mOsm or 210 mOsm, represented 50%-65% and 13%-31%, respectively, of the total amino acid content in cells. In both astrocytes and neurons, the efflux of glutamine and alanine was higher under isosmotic conditions and increased only marginally during hyposmotic conditions. 86Rb+, used as tracer for K+, was released from astrocytes, 30% and 11%, respectively, in hyposmotic media of 150 mOsm or 210 mOsm but was not transported in neurons. From these results it was calculated that FAA contribute 54% and inorganic ions 46% to the process of volume regulation in astrocytes exposed to a 150 mOsm hyposmotic medium. This contribution was 55% for FAA and 45% for K+ and Cl- in cells exposed to 210 mOsm hyposmotic solutions. These results indicate that the contribution of FAA to the process of cell volume regulation is higher in astrocytes than in other cell types including renal and blood cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
January 2000, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
July 2010, Neuroscience,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
January 2005, The Journal of eukaryotic microbiology,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
January 2001, Experimental nephrology,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
June 1996, Kidney international,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
April 2002, Bone,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
September 1996, The American journal of physiology,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
February 1998, Hepatology (Baltimore, Md.),
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
March 2008, The Journal of biological chemistry,
H Pasantes-Morales, and S Alavez, and R Sánchez Olea, and J Morán
January 1997, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!