A study of cross-resistance pattern and expression of molecular markers of multidrug resistance in a human small-cell lung-cancer cell line selected with doxorubicin. 1993

R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy.

A doxorubicin-resistant variant of the human small-cell lung-cancer cell line N592 was selected by in vitro continuous exposure to increasing drug concentrations. The aim of this study was to examine the cross-resistance pattern, cellular pharmacokinetics of doxorubicin and expression of molecular factors of resistance. The sub-line N592/DX exhibited a multidrug-resistance phenotype, which was somewhat atypical, since it included cisplatin. Development of doxorubicin resistance could not be attributed to differential doxorubicin uptake or retention. Verapamil partially reverted doxorubicin resistance without affecting cellular pharmacokinetics. These findings are consistent with undetectable levels of mdr-1-gene expression in these cells. A molecular analysis of other putative mechanisms of multidrug resistance indicated no alterations in GSH levels or GSH-related enzymes, but a marginal reduction of topoisomerase II alpha expression in the resistant sub-line. This reduction, which was associated with an increase in topoisomerase I, does not explain the high degree of resistance. This study supports the view that alternative, unidentified mechanisms, which may be of clinical relevance, must be involved in the development of multidrug resistance of small-cell lung cancer.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005723 gamma-Glutamyltransferase An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid. GGTP,Glutamyl Transpeptidase,gammaglutamyltransferase,gamma-Glutamyl Transpeptidase,Transpeptidase, Glutamyl,Transpeptidase, gamma-Glutamyl,gamma Glutamyl Transpeptidase,gamma Glutamyltransferase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
May 1987, Cancer research,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
January 1995, Journal of cancer research and clinical oncology,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
January 1990, Cancer chemotherapy and pharmacology,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
October 1989, Cancer research,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
November 2010, Chinese medical journal,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
September 2001, British journal of haematology,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
September 1985, Cancer research,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
November 1999, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
September 2019, Neoplasma,
R Supino, and M Binaschi, and G Capranico, and R A Gambetta, and E Prosperi, and E Sala, and F Zunino
October 1988, British journal of cancer,
Copied contents to your clipboard!