Investigation of the subtypes of alpha 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. 1993

R Aboud, and M Shafii, and J R Docherty
Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland.

1. The subtypes of alpha 1-adrenoceptor mediating contractions to exogenous noradrenaline (NA) or phenylephrine in rat vas deferens, spleen and aorta, and mediating contractions to endogenous NA in rat vas deferens have been examined. 2. In rat vas deferens, the competitive antagonists prazosin, WB 4101, benoxathian and 5-methyl-urapidil inhibited contractions to NA with pA2 values of 9.26, 9.54, 9.02 and 8.43, respectively. The irreversible antagonist chloroethylclonidine (CEC) (100 microM) failed to affect contractions to NA. 3. In rat vas deferens in the presence of nifedipine (10 microM), contractions to NA were significantly attenuated and under these conditions, CEC (100 microM) significantly reduced the maximum response to NA. 4. In rat spleen, the competitive antagonists prazosin, WB 4101 and benoxathian inhibited contractions to phenylephrine with pA2 values of 9.56, 8.85 and 7.60, respectively, and 5-methyl-urapidil had a KB of 6.62. CEC (100 microM) significantly reduced the maximum contraction to phenylephrine. 5. In rat aorta, the competitive antagonists, prazosin, WB 4101, benoxathian and 5-methyl-urapidil inhibited contractions to NA with pA2 values of 9.45, 9.21, 8.55 and 8.12, respectively. CEC (100 microM) produced an approximately parallel shift in the potency of NA, without significantly reducing the maximum response. 6. In epididymal portions of rat vas deferens in the presence of nifedipine (10 microM), the isometric contraction to a single electrical pulse was significantly reduced by CEC (100 microM), and by the competitive antagonists prazosin, WB 4101, benoxathian and 5-methyl-urapidil at concentrations of 1 nM. 7. In prostatic portions of rat vas deferens, the alpha l-adrenoceptor agonist, amidephrine, produced concentration-dependent increases in the isometric contraction to a single electrical stimulus and the maximum increase in the evoked response produced by amidephrine was unaffected by CEC (100 microM).8. Contractions of rat vas deferens produced by NA (and amidephrine) are mediated predominantly by alpha lA-adrenoceptors as shown by the high potency of alpha lA-adrenoceptor selective antagonists and the lack of effect of CEC. A small CEC-sensitive response, particularly in epididymal portions, was revealed in the presence of nifedipine. Contractions of rat spleen are mediated by alpha lB-adrenoceptors since alpha 1A selective antagonists showed low potency and CEC significantly reduced the maximum contraction to phenylephrine. Contractions of rat aorta to NA are mediated by non-alpha lA, non-alpha lB-adrenoceptors, due to the high potency of the aMA-selective antagonists and sensitivity to CEC.9. The noradrenergic contraction of epididymal portions of rat vas deferens in the presence of nifedipine is CEC-sensitive, but the alpha 1 A-selective antagonists showed high potency, suggesting that this response is mediated by non-alpha lA, non-alpha 1B-adrenoceptors.10. In conclusion, at least three subtypes of functional alpha 1-adrenoceptors have been demonstrated in these studies.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.

Related Publications

R Aboud, and M Shafii, and J R Docherty
November 1999, British journal of pharmacology,
R Aboud, and M Shafii, and J R Docherty
September 1993, General pharmacology,
R Aboud, and M Shafii, and J R Docherty
April 2000, European journal of pharmacology,
R Aboud, and M Shafii, and J R Docherty
November 1994, European journal of pharmacology,
R Aboud, and M Shafii, and J R Docherty
November 1992, British journal of pharmacology,
R Aboud, and M Shafii, and J R Docherty
May 1984, British journal of pharmacology,
R Aboud, and M Shafii, and J R Docherty
June 2003, European journal of pharmacology,
Copied contents to your clipboard!