Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis. 1993

M F Smeets, and E H Mooren, and A C Begg
Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam.

Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitive. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Dose response experiments for damage induction correlated well with the results using prelabelled cells. Linear DNA damage induction curves were observed with a sensitivity for the post-labelling method of 1 Gy. No differences in DSB induction were found, however, between the radiosensitive SCC61 and the radioresistant SQ20B cell line. Repair experiments were carried out with trypsinized cells with different doses and repair temperatures. The 10, 25 and 50 Gy doses resulted in 6, 13 and 50% of the DNA migrating out of the plug at 0 h. For both the cell lines 75-85% of the initial damage was repaired within 1 h at 37 degrees C at all three radiation doses, i.e. no significant differences were observed in repair rates or extent between the two cell lines. At 24 degrees C repair was slower than at 37 degrees C, and at 0 degree C no repair was observed. In summary, radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis.

UI MeSH Term Description Entries
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M F Smeets, and E H Mooren, and A C Begg
December 1995, Radiation research,
M F Smeets, and E H Mooren, and A C Begg
January 1996, Mutation research,
M F Smeets, and E H Mooren, and A C Begg
January 2004, Cytogenetic and genome research,
M F Smeets, and E H Mooren, and A C Begg
January 2012, Methods in molecular biology (Clifton, N.J.),
M F Smeets, and E H Mooren, and A C Begg
January 2005, Methods in molecular biology (Clifton, N.J.),
M F Smeets, and E H Mooren, and A C Begg
January 1992, Methods in molecular biology (Clifton, N.J.),
M F Smeets, and E H Mooren, and A C Begg
January 1994, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!