Induction of type I diabetes by interferon-alpha in transgenic mice. 1993

T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
Department of Endocrine Research, Genentech, Inc., South San Francisco, CA 94080.

Type I diabetes is an autoimmune disease involving an interaction between an epigenetic event (possibly a viral infection), the pancreatic beta cells, and the immune system in a genetically susceptible host. The possibility that the type I interferons could mediate this interaction was tested with transgenic mice in which the insulin-producing beta cells expressed an interferon-alpha. These mice developed a hypoinsulinemic diabetes associated with a mixed inflammation centered on the islets. The inflammation and the diabetes were prevented with a neutralizing antibody to the interferon-alpha. Thus, the expression of interferon-alpha by the beta cells could be causal in the development of type I diabetes, which suggests a therapeutic approach to this disease.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
October 1998, Diabetologia,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
August 2008, Proceedings of the National Academy of Sciences of the United States of America,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
September 2018, Scientific reports,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
July 1998, Pharmacological research,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
January 2014, PloS one,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
April 1993, Experimental cell research,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
October 2018, Research in veterinary science,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
July 2022, Nature,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
June 1983, The Indian journal of medical research,
T A Stewart, and B Hultgren, and X Huang, and S Pitts-Meek, and J Hully, and N J MacLachlan
October 2010, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!