Periportal- and perivenous-enriched hepatocyte couplets: differences in canalicular activity and in response to oxidative stress. 1993

J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
School of Biochemistry, University of Birmingham, U.K.

Unlike isolated single hepatocytes, hepatocyte couplets retain their apical polarity, and, during short-term culture form an enclosed canalicular space or vacuole between the two adjacent cells into which biliary secretion is initiated. Hepatocyte couplets were prepared after partial collagenase perfusion of rat liver. Centrifugal elutriation was used to fractionate the preparation into six couplet-containing suspensions. Image analysis was used to determine the size of cultured couplets. The size of the couplets ranged from 34.1 +/- 0.76 microns and 684 +/- 24.1 microns 2 (mean length and area respectively +/- S.E.M.) in Fraction 2, to 43.7 +/- 0.57 microns and 1033 +/- 33.8 microns 2 length and area respectively in Fraction 7. Glutamine synthetase activity was assessed in each freshly eluted fraction and was shown to be predominant in Fractions 6 and 7. Pretreatment of rats with CCl4, which selectively destroys perivenous hepatocytes, decreased the proportion of couplets in these fractions by over 67%, and their glutamine synthetase activity by over 97%. It was concluded that Fractions 2 and 3 contained predominantly couplets of Zone 1 (periportal) origin, Fractions 4 and 5 those from Zone 2, and Fractions 6 and 7 predominantly couplets of Zone 3 (perivenous) origin. The development of canalicular secretory activity was assessed in the couplets after a 15 min incubation with a fluorescent bile acid, cholyl-lysyl-fluorescein (CLF). This was sigmoidal in all fractions, but slower in the periportal couplets, taking 5.1 h for 50% to show secretory activity in Fraction 2, compared with 2.7 h for Fraction 7. Incubation of hepatocyte couplets with 1 or 10 microM taurodehydrocholate, a non-toxic bile acid analogue, did not influence the rate of development of accumulation of CLF by the couplets or the area of the canalicular vacuole in any fraction. However, it did decrease the CLF content of couplets incubated with CLF for 15 min to a greater extent in those of perivenous origin. After subjecting the couplets to oxidative stress by incubation with 20 microM menadione (2-methyl-1,4-naphthoquinone), it was evident that periportal couplets were less able to maintain canalicular secretory activity than perivenous couplets.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D008297 Male Males
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002501 Centrifugation, Zonal Centrifugation using a rotating chamber of large capacity in which to separate cell organelles by density-gradient centrifugation. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Zonal,Zonal Centrifugation,Zonal Centrifugations
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein

Related Publications

J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
January 1985, Transactions of the Association of American Physicians,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
September 2006, World journal of gastroenterology,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
April 1994, Biochimica et biophysica acta,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
January 1988, Scandinavian journal of gastroenterology. Supplement,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
December 1994, Biochemical pharmacology,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
February 1989, Biochimica et biophysica acta,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
February 1989, The Journal of clinical investigation,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
January 2001, Toxicology in vitro : an international journal published in association with BIBRA,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
March 1999, Drug metabolism and disposition: the biological fate of chemicals,
J C Wilton, and J K Chipman, and C J Lawson, and A J Strain, and R Coleman
June 1988, FEBS letters,
Copied contents to your clipboard!