Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study. 1993

P Molist, and I Rodríguez-Moldes, and R Anadón
Department of Fundamental Biology, University of Santiago de Compostela, Spain.

We examined the organization of catecholaminergic neurons in the hypothalamus of the painted ray, Raja undulata, and the small-spotted dogfish, Scyliorhinus canicula, with the use of formaldehyde-induced fluorescence (FIF) methods and tyrosine hydroxylase (TH) immunohistochemistry. In both species we identified distinct populations of catecholamine-containing neurons differing in a) their immunoreactivity to antibodies against the enzyme tyrosine hydroxylase (TH), b) their fluorescence in response to FIF methods for the detection of catecholamines, and c) their relationship with the third ventricle. One population is made up of FIF-positive and TH-negative neurons (most of which are CSF [cerebrospinal fluid]-contacting) and located in two circumventricular organs, the preoptic recess organ and the organon vasculosum hypothalami. Another population comprises TH-immunoreactive (TH-IR), FIF negative neurons that are located in the suprachiasmatic nucleus and the posterior tuberculum and are not related to the third ventricle recesses. A third population of TH-IR, CSF-contacting neurons is also present in the organon vasculosum hypothalami. The existence of three catecholaminergic populations suggests differences in the metabolism of catecholamines and/or different functions. The circumventricular neurons are not associated with the hypophysis and appear to accumulate catecholamine (dopamine) obtained from exogenous sources. In both Raja and Scyliorhinus the neurointermediate lobe is innervated by TH-IR fibres originating from dopamine-synthesizing neurons of the second catecholaminergic population.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins

Related Publications

P Molist, and I Rodríguez-Moldes, and R Anadón
January 1987, Journal fur Hirnforschung,
P Molist, and I Rodríguez-Moldes, and R Anadón
January 2015, Frontiers in neuroanatomy,
P Molist, and I Rodríguez-Moldes, and R Anadón
January 1981, The Journal of comparative neurology,
P Molist, and I Rodríguez-Moldes, and R Anadón
June 1986, The Journal of comparative neurology,
P Molist, and I Rodríguez-Moldes, and R Anadón
January 1981, The Journal of comparative neurology,
P Molist, and I Rodríguez-Moldes, and R Anadón
January 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
P Molist, and I Rodríguez-Moldes, and R Anadón
September 1978, General and comparative endocrinology,
P Molist, and I Rodríguez-Moldes, and R Anadón
August 1983, The Journal of comparative neurology,
P Molist, and I Rodríguez-Moldes, and R Anadón
November 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Copied contents to your clipboard!