A 5-hydroxytryptamine2 agonist augments gamma-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons. 1993

C Chiang, and G Aston-Jones
Department of Mental Health Sciences, Hahnemann University, Philadelphia, PA 19102.

We examined the effects of the 5-hydroxytryptamine2 receptor agonist, (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, on spontaneous and evoked discharge of locus coeruleus neurons in the rat. Extracellular recordings were obtained from single locus coeruleus neurons while (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane was injected systemically or locally into the locus coeruleus. Systemic, but not local, administration of (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane decreased spontaneous discharge of locus coeruleus neurons in a dose-dependent manner while simultaneously increasing responses evoked by somatosensory stimulation, consistent with previous studies using 5-hydroxytryptamine2 agonists. Increased responsiveness was observed after both low- and high-intensity stimulation and, in the latter, resulted from the addition of a second, longer latency response after (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration, when cells typically responded to each stimulation with two driven spikes instead of one. Both of these effects could be completely reversed by systemic administration of the 5-hydroxytryptamine2 receptor antagonist, ketanserin. Furthermore, we report that: (i) the (+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane-induced decrease in spontaneous firing was blocked by local infusion of the GABA antagonists bicuculline or picrotoxin into the locus coeruleus, but not by local infusion of the alpha-2 adrenoceptor antagonist, idazoxan; and (ii) the enhancement of locus coeruleus sensory responses after high-intensity stimulation was blocked by local application of the selective antagonist of N-methyl-D-aspartate receptors, 2-amino-5-phosphonopentanoic acid, but not by local infusion of the preferential antagonist of non-N-methyl-D-aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione. Together, these results lead us to propose that systemic 5-hydroxytryptamine2 agonists influence locus coeruleus indirectly, causing tonic activation of a GABAergic input to the locus coeruleus, and facilitating sensory inputs that act via excitatory amino acid receptors within locus coeruleus.

UI MeSH Term Description Entries
D007650 Ketanserin A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients. 3-(2-(4-(4-Fluorobenzoyl)piperidinol)ethyl)-2,4(1H,3H)-quinazolinedione,R-41,468,R-41468,R 41,468,R 41468,R41,468,R41468
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011810 Quinoxalines Quinoxaline
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

C Chiang, and G Aston-Jones
February 1996, Alcoholism, clinical and experimental research,
C Chiang, and G Aston-Jones
September 2015, Life sciences,
C Chiang, and G Aston-Jones
November 2022, The Journal of physiology,
C Chiang, and G Aston-Jones
February 1992, Naunyn-Schmiedeberg's archives of pharmacology,
C Chiang, and G Aston-Jones
March 2008, Pflugers Archiv : European journal of physiology,
C Chiang, and G Aston-Jones
October 1994, Microscopy research and technique,
Copied contents to your clipboard!