Isolation and characterization of mutants defective in production of laccase in Neurospora crassa. 1993

A Zamma, and H Tamaru, and T Harashima, and H Inoue
Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan.

A protein synthesis inhibitor, cycloheximide, induces excretion of laccase in Neurospora crassa. The lah-1 mutation results in excretion of a large amount of laccase even in the absence of cycloheximide. Ten mutations were induced that suppress derepressed excretion of laccase in the lah-1 mutant. Of these, seven second-site mutations were found to confer a laccase-noninducible phenotype, and were classified into two different complementation groups. Four mutations define a locus designated lni-1, found to be closely linked to ylo-1 on linkage group VI. The other three mutations were mapped to second locus, designated lni-2, that lies between nic-3 and thi-3 on linkage group VII. The lni-2 locus was shown to encode laccase by RFLP mapping of the DNA fragment encoding laccase and by transformation of the lni-2 mutant with plasmid pBL1 carrying the laccase gene (the locus encoding laccas is hereafter described as lacc). All lacc mutants examined (whether mutagen-induced or inactivated by repeat-induced point mutation) appeared to exhibit no phenotypic deficiency during both asexual and sexual cycles, suggesting that the laccase gene is dispensable in N. crassa. Northern analysis of total cellular RNA from the four lni-1 mutants demonstrated that the lni-1 mutations abolish increased transcription of the laccase gene under inducing conditions. Consequently, the lni-1 locus is inferred to encode a trans-acting positive regulator required for transcriptional activation of the laccase gene in response to cycloheximide. Possible functions of the lah-1 gene are also described.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

A Zamma, and H Tamaru, and T Harashima, and H Inoue
July 1980, Genetics,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
December 1978, Journal of bacteriology,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
September 1969, Genetics,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
July 1969, Molecular & general genetics : MGG,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
November 1989, Journal of bacteriology,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
November 2020, Genetics,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
October 1971, Journal of bacteriology,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
March 1989, Canadian journal of microbiology,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
May 1983, Genetics,
A Zamma, and H Tamaru, and T Harashima, and H Inoue
February 1984, Mutation research,
Copied contents to your clipboard!