Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity. 1993

M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
Department of Neuroscience B. Brodie, University of Cagliari, Italy.

1. In the present study we provide evidence for a saturable, Mg2+/ATP- and temperature-dependent, tetrabenazine-, dopamine-, and amphetamine-sensitive uptake of 1-methyl-4-phenylpyridinium ion (MPP+) in synaptic vesicles from mouse striatum. 2. Similarity in the properties of the vesicular uptake suggests that in the striatum dopamine and MPP+ share the vesicular carrier. 3. The presence of MPP+ vesicular uptake in dopamine-rich regions such as striatum, olfactory, tubercles and hypothalamus, as well as its absence in cerebellum, cortex and pons-medulla, suggest that monoamine vesicular carriers differ between highly and poorly dopamine-innervated regions. 4. The restriction of active MPP+ uptake to the dopaminergic regions, which reflects the previously shown distribution of [3H]-MPP+ binding sites in mouse brain membranes, indicates MPP+ as a marker of the vesicular carrier for dopamine in dopaminergic neurones. 5. A role in MPP+ neurotoxicity is suggested for this region-specific, vesicular storage of the toxin.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009422 Nervous System Diseases Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle. Neurologic Disorders,Nervous System Disorders,Neurological Disorders,Disease, Nervous System,Diseases, Nervous System,Disorder, Nervous System,Disorder, Neurologic,Disorder, Neurological,Disorders, Nervous System,Disorders, Neurologic,Disorders, Neurological,Nervous System Disease,Nervous System Disorder,Neurologic Disorder,Neurological Disorder
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
January 1995, Advances in experimental medicine and biology,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
February 1990, Journal of neuroscience methods,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
July 1986, European journal of pharmacology,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
January 1998, Progress in brain research,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
November 1984, European journal of pharmacology,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
July 2008, Neurological research,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
January 2004, Neurochemistry international,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
October 2019, Brain research,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
January 2006, Toxicological sciences : an official journal of the Society of Toxicology,
M Del Zompo, and M P Piccardi, and S Ruiu, and M Quartu, and G L Gessa, and A Vaccari
January 2006, Brain research,
Copied contents to your clipboard!