Role of NH2-terminal positively charged residues in establishing membrane protein topology. 1993

G D Parks, and R A Lamb
Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500.

The paramyxovirus HN polypeptide is a model type II membrane protein, containing an internal uncleaved signal/anchor (S/A) and is oriented in the membrane with an NH2-terminal cytoplasmic domain and COOH-terminal ectodomain (Ncyt topology). To test the role of NH2-terminal positively charged residues in directing the HN membrane topology, the 3 arginine (Arg) residues within the 17-amino-acid NH2-terminal domain were systematically converted to a glutamine or glutamate, and the topology of the mutant proteins was examined after expression in CV-1 cells. The data indicate that: (i) each of the NH2-terminal Arg residues contributes to the signal directing proper HN topology, since substitutions in any of the three positions resulted in approximately 13-23% inversion into the Nexo form; (ii) substitutions in the Arg directly flanking the signal/anchor domain resulted in slightly more inversion than those which were located more distally; and (iii) substitution with a negatively charged glutamate led to more inversion than did replacement with an uncharged glutamine. The effect of a single Arg to Glu substitution on the HN topology was enhanced when present in the context of a truncated NH2-terminal cytoplasmic tail (3 residues). A comparison of the sequences flanking the signal/anchor of well documented type III proteins showed that the majority of these proteins contain a negatively charged residue flanking the NH2-terminal side. An exception to this rule is the NB protein which contains a single positively charged Arg residue in this position. A chimeric protein containing the NB ectodomain and the HN S/A and HN ectodomain lead to a significant fraction (70%) of the chimeric protein adopting type II topology suggesting that the positive charge flanking the S/A domain is important for establishing type II topology. These data are discussed in the context of the loop model for the biogenesis of integral membrane proteins and the possible signals necessary for establishing differing orientations.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010252 Paramyxoviridae A family of spherical viruses, of the order MONONEGAVIRALES, somewhat larger than the orthomyxoviruses, and containing single-stranded RNA. Subfamilies include PARAMYXOVIRINAE and PNEUMOVIRINAE. Ferlavirus,Ferlaviruses
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine

Related Publications

G D Parks, and R A Lamb
July 1990, Trends in biochemical sciences,
G D Parks, and R A Lamb
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
G D Parks, and R A Lamb
October 1999, Biochemical and biophysical research communications,
G D Parks, and R A Lamb
September 2007, American journal of physiology. Cell physiology,
Copied contents to your clipboard!