Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. 1993

C W Berridge, and M E Page, and R J Valentino, and S L Foote
Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla 92093.

The effects of inhibition of locus coeruleus neuronal discharge activity on cortical and hippocampal electroencephalographic activity were examined in halothane-anesthetized rats. A combined recording/infusion probe was used to place 35-150-nl infusions of the alpha 2-noradrenergic agonist, clonidine (1 ng/nl) which inhibits locus coeruleus neuronal discharge activity, immediately adjacent to the locus coeruleus. The recording electrode allowed verification and quantification of the electrophysiological effects of these infusions. Simultaneously, electroencephalographic activity was recorded from sites in frontal neocortex and dorsal hippocampus and subjected to power spectrum analyses. Neither cortical nor hippocampal electroencephalographic activity was substantially affected following unilateral locus coeruleus inactivation. In contrast, bilateral clonidine infusions that completely suppressed locus coeruleus neuronal discharge activity in both hemispheres altered cortical and hippocampal electroencephalographic status. The cortical response to bilateral LC inhibition was characterized by a shift from low-amplitude, high-frequency to large-amplitude, slow-wave activity. Additionally, theta-dominated activity in the hippocampus was replaced with mixed frequency activity. The onset of these changes in forebrain electroencephalographic activity was coincident with the complete bilateral inhibition of locus coeruleus neuronal discharge activity. The resumption of pre-infusion electroencephalographic patterns closely followed recovery of locus coeruleus neuronal activity or could be induced with systemic administration of the alpha 2-noradrenergic antagonist, idazoxan. Clonidine infusions placed 800-1200 microns from the locus coeruleus were less effective at inducing a complete suppression of locus coeruleus activity. These infusions either did not completely inhibit locus coeruleus discharge (35 nl infusions), or did so with a longer latency to complete locus coeruleus inhibition and a shorter duration of inhibition (150 nl infusions). Changes in forebrain electroencephalographic activity occurred only following the complete bilateral suppression of locus coeruleus neuronal discharge activity. These electroencephalographic responses closely followed or coincided with the onset of complete bilateral locus coeruleus inhibition and persisted throughout the period during which bilateral LC neuronal discharge activity was completely absent (60-240 min). Recovery of electroencephalographic patterns was coincident with the reappearance of locus coeruleus discharge activity. These results suggest that the clonidine-induced changes in forebrain electroencephalographic activity were dependent on the complete bilateral suppression of locus coeruleus discharge activity, and that under the present experimental conditions the locus coeruleus/noradrenergic system exerts a potent and tonic activating influence on forebrain electroencephalographic state. These results support the hypothesis that this system may be an important modulator of behavioral state and/or state-dependent processes.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004146 Dioxanes Compounds that contain the structure 1,4-dioxane.
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

C W Berridge, and M E Page, and R J Valentino, and S L Foote
October 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
January 1988, Clinical neuropharmacology,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
April 2004, Respiratory physiology & neurobiology,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
January 2001, Pharmacology, biochemistry, and behavior,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
February 2003, Neuroscience letters,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
September 2020, Brain research bulletin,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
January 1980, Acta biologica et medica Germanica,
C W Berridge, and M E Page, and R J Valentino, and S L Foote
January 1989, The European journal of neuroscience,
Copied contents to your clipboard!