Effects of serotonin on retinotectal-, corticotectal-, and glutamate-induced activity in the superior colliculus of the hamster. 1993

X Huang, and R D Mooney, and R W Rhoades
Department of Anatomy, Medical College of Ohio, Toledo 43699-0008.

1. Single-unit recording and iontophoretic techniques were used to test the effects of serotonin (5-HT) on the responses of neurons in the superficial layers (the stratum griseum superficiale and stratum opticum) of the hamster's superior colliculus (SC). 2. Iontophoresis of 5-HT produced a visual response suppression of 40% or greater in 78.1% (n = 50) of 64 neurons tested. 5-HT did not augment the visual responses of any of the cells tested. The average response suppression was 75.3 +/- 21.2% (mean +/- S.D.). 3. Iontophoresis of 5-HT had significantly different effects on activation of SC cells by optic chiasm (OX) and visual cortical (CTX) stimulation. Application of 5-HT suppressed the OX-evoked responses of 96.9% (n = 31) of the 32 SC cells tested by at least 40%, and the average response suppression for all 32 neurons tested was 87.1 +/- 22.5%. Application of 5-HT suppressed the responses of only 35.7% (n = 10) of the 28 cells tested with CTX stimulation by at least 40%. The average response suppression for all 28 cells was 35.3 +/- 38.8%. 4. The effects of 5-HT on the glutamate-evoked responses of SC cells that were synaptically "isolated" by concurrent application of Mg2+ were also evaluated. Application of 5-HT produced a response suppression > or = 40% in 29.7% (n = 19) of the 64 neurons tested under these conditions. The average response suppression for all of the cells tested was 28.4 +/- 35.7%. This effect of 5-HT was significantly weaker than that on visually evoked responses of these neurons. 5. The present results demonstrate that 5-HT markedly depresses the visual responses of most superficial layer SC neurons. They suggest further that much of this effect is mediated by presynaptic inhibition of retinotectal transmission.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

X Huang, and R D Mooney, and R W Rhoades
October 1997, The Journal of comparative neurology,
X Huang, and R D Mooney, and R W Rhoades
February 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
X Huang, and R D Mooney, and R W Rhoades
January 1999, Visual neuroscience,
X Huang, and R D Mooney, and R W Rhoades
January 1992, Experimental brain research,
X Huang, and R D Mooney, and R W Rhoades
January 1996, The Journal of comparative neurology,
X Huang, and R D Mooney, and R W Rhoades
January 1990, Behavioural brain research,
X Huang, and R D Mooney, and R W Rhoades
July 1981, Brain research,
Copied contents to your clipboard!