Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. 1994

T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.

Significant activity of phosphatidylinositol 3-kinase (PI 3-kinase) was detected in the membrane fractions, or in the immunoprecipitates prepared with anti-phosphotyrosine antibodies, from rat adipocytes that had been incubated with insulin for 20 min. The PI 3-kinase activity in these preparations as well as in the whole cell lysates of adipocytes not treated with insulin was inhibited by the addition of wortmannin, a fungal metabolite, to the enzyme assay mixture. The inhibition was dependent on the inhibitor concentration with IC50 being less than 10 nM and perfect inhibition at 100 nM. The effect of insulin to induce membrane PI 3-kinase activity was mostly abolished, but its effects to tyrosine-phosphorylate the beta-subunit of the insulin receptor or other cellular substrate proteins including insulin-receptor-substrate-1 were not at all antagonized, by wortmannin added to the cell incubation medium. Insulin stimulation of cellular 2-deoxyglucose uptake and inhibition of isoproterenol-induced lipolysis observable in adipocytes under the same conditions were also antagonized by wortmannin added in the same concentration range as used for the inhibition of insulin-susceptible PI 3-kinase. It is concluded, therefore, that activation of wortmannin-sensitive PI 3-kinase plays a pivotal role in the intracellular signaling pathways arising from the insulin receptor autophosphorylation and leading to certain metabolic responses.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000077191 Wortmannin An androstadiene metabolite produced by the fungi PENICILLIUM funiculosum that inhibits PHOSPHATIDYLINOSITOL-3-KINASES and alloantigen-specific activation of T-LYMPHOCYTES in human tumor cell lines. It is widely used in CELL BIOLOGY research and has broad therapeutic potential. MS 54,MS-54,MS54

Related Publications

T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
May 1994, Cancer research,
T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
February 1995, European journal of immunology,
T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
January 1995, Seikagaku. The Journal of Japanese Biochemical Society,
T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
November 1997, The Journal of biological chemistry,
T Okada, and Y Kawano, and T Sakakibara, and O Hazeki, and M Ui
September 2007, Biochimica et biophysica acta,
Copied contents to your clipboard!