Different active sites of mammalian DNA ligases I and II. 1994

E Roberts, and R A Nash, and P Robins, and T Lindahl
Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, United Kingdom.

Bovine DNA ligases I and II were adenylylated in the presence of [alpha-32P]ATP and digested with limiting amounts of trypsin or V8 protease. The generation of radioactive peptides of decreasing size was monitored by polyacrylamide gel electrophoresis and autoradiography. Active site peptides obtained by complete proteolytic digestions with trypsin, V8, or Lys-C protease were also compared. The partial digestion products of DNA ligases I and II were entirely different, with no indication of extensive sequence homology. Furthermore, the sequence of the active site region of DNA ligase I is clearly different from that of DNA ligase II. Similar analysis of a third chromatographically distinct mammalian DNA ligase indicated that it is different from DNA ligase I but related to DNA ligase II.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072481 DNA Ligase ATP ATP-dependent cellular enzyme which catalyzes DNA replication, repair and recombination through formation of internucleotide ester bonds between phosphate and deoxyribose moieties. Vertebrate cells encode three well-characterized DNA ligases, DNA ligase I, III and IV, all of which are related in structure and sequence. DNA ligases either require ATP or NAD. However, archaebacterial, viral, and some eubacterial DNA ligases are ATP-dependent. ATP-Dependent DNA Ligase,DNA Ligase I,DNA Ligase II,DNA Ligase III,DNA Ligase IIIalpha,DNA Ligase IV,DNA Ligases, ATP-Dependent,LIGIIIalpha Protein,Polydeoxyribonucleotide Synthase ATP,ATP Dependent DNA Ligase,ATP, DNA Ligase,ATP, Polydeoxyribonucleotide Synthase,ATP-Dependent DNA Ligases,DNA Ligase, ATP-Dependent,DNA Ligases, ATP Dependent,IIIalpha, DNA Ligase,Ligase ATP, DNA,Ligase I, DNA,Ligase II, DNA,Ligase III, DNA,Ligase IIIalpha, DNA,Ligase IV, DNA,Ligase, ATP-Dependent DNA,Ligases, ATP-Dependent DNA,Synthase ATP, Polydeoxyribonucleotide
D000075223 Poly-ADP-Ribose Binding Proteins Proteins that contain POLY-ADP RIBOSE BINDING MOTIFS. They include HISTONES and other proteins that function in DNA REPAIR, replication, gene transcription, and APOPTOSIS. pADPr-Binding Proteins,Binding Proteins, Poly-ADP-Ribose,Poly ADP Ribose Binding Proteins,pADPr Binding Proteins

Related Publications

E Roberts, and R A Nash, and P Robins, and T Lindahl
September 1986, Biochimica et biophysica acta,
E Roberts, and R A Nash, and P Robins, and T Lindahl
January 1992, Annual review of biochemistry,
E Roberts, and R A Nash, and P Robins, and T Lindahl
October 1997, BioEssays : news and reviews in molecular, cellular and developmental biology,
E Roberts, and R A Nash, and P Robins, and T Lindahl
July 1990, The Journal of biological chemistry,
E Roberts, and R A Nash, and P Robins, and T Lindahl
July 1990, The Journal of biological chemistry,
E Roberts, and R A Nash, and P Robins, and T Lindahl
July 1986, The Journal of biological chemistry,
E Roberts, and R A Nash, and P Robins, and T Lindahl
February 1998, Mutation research,
E Roberts, and R A Nash, and P Robins, and T Lindahl
November 1991, The Journal of biological chemistry,
E Roberts, and R A Nash, and P Robins, and T Lindahl
January 2024, Journal of molecular biology,
E Roberts, and R A Nash, and P Robins, and T Lindahl
January 2001, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!