Characterization of the mitochondrial processing peptidase of Neurospora crassa. 1994

M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
Institut für Physiologische Chemie, Universität München, Federal Republic of Germany.

The mitochondrial processing peptidase (MPP) of Neurospora crassa is constituted by an alpha- and a beta-subunit. We have purified alpha-MPP after expression in Escherichia coli while beta-MPP was purified from mitochondria. A fusion protein between precytochrome b2 and mouse dihydrofolate reductase was expressed in E. coli, and the purified protein was used as substrate for MPP. Both subunits of MPP are required for processing. MPP removes the matrix targeting signal of cytochrome b2 by a single cut, and the resulting presequence peptide is 31 amino acid residues in length. It acts as a competitive inhibitor of processing but has a approximately 30-fold lower affinity for MPP than the preprotein. Competition assays show that MPP recognizes the COOH-terminal portion of the presequence of cytochrome b2 rather than the NH2-terminal part which has the potential to form an amphiphilic helix. Substitution of arginine in position -2 of the matrix targeting sequence of cytochrome b2 prevents processing but not import of a chimeric precursor. Substitution of the tyrosyl residue in position +1 also prevents processing, indicating that MPP interacts with sequences COOH-terminal to the cleavage site. Non-cleavable preprotein is still recognized by MPP. Our data suggest that processing peptidase and import machinery recognize distinct structural elements in preproteins which, however, can be overlapping.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid

Related Publications

M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
January 1995, Methods in enzymology,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
January 1994, Folia microbiologica,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
October 2021, Letters in applied microbiology,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
September 1978, Biochimica et biophysica acta,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
March 1969, Journal of molecular biology,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
December 1979, Cell,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
August 1996, Archives of biochemistry and biophysics,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
January 1979, Methods in enzymology,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
June 1971, Nature: New biology,
M Arretz, and H Schneider, and B Guiard, and M Brunner, and W Neupert
December 1967, The Journal of cell biology,
Copied contents to your clipboard!