Spectroscopic characterization of tyrosine-Z in histidine 190 mutants of the D1 protein in photosystem II (PSII) in Chlamydomonas reinhardtii. Implications for the structural model of the donor side of PSII. 1994

R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
Department of Plant Biology, Ohio State University, Columbus 43210.

EPR spectra attributed to the redox active tyrosine residues on the oxidizing side of photosystem II (TyrZ and TyrD) have almost identical line shapes, although the tyrosyl radicals differ in stability and redox characteristics. Strongly modified spectra of oxidized TyrD in site-directed mutants in a histidine residue, H189 on the D2 reaction center protein in the cyanobacterium Synechocystis 6803, support a structural model where H189 interacts closely, probably via a hydrogen bond, to TyrD (Tommos, C., Davidsson, L., Svensson, B., Madsen, C., Vermass, W., and Styring, S. (1993) Biochemistry 32, 5436-5441). To determine whether TyrZ and the corresponding histidine on the D1 protein (D1-H190) interacts similarly, we have generated His-Phe (H190F) and His-Tyr (H190Y) mutations in the C2 symmetry related H190 residue on the D1 reaction center protein by site-directed mutagenesis in Chlamydomonas reinhardtii. The H190F and H190Y mutants assemble photosystem II reaction centers capable of primary photochemistry but unable to oxidize water. We have obtained kinetic spectra of a flash-induced transient EPR signal that we assign to oxidized TyrZ in the D1-H190 mutants. The spectra are identical in line width (18-20 G) and hyperfine structure to the wild-type spectrum from oxidized TyrZ and exhibit decay kinetics (t 1/2 approximately 500 ms) typical for the TyrZ radical in managenese-depleted photosystem II membranes. However, both TyrZ and TyrD were oxidized with reduced (10-15%) quantum yield in these mutants, indicating that the kinetics of electron donation to P+680 were significantly modified as a result of the mutation. Thus, the altered kinetics of TyrZ in the mutants suggest that there is an interaction between TyrZ and His-190 on the D1 protein. However, unlike the situation on the D2 side, the presence of a hydrogen bond between TyrZ and H190 on the D1 protein is improbable.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
May 1994, Biochimica et biophysica acta,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
September 2002, Biochemistry,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
October 1998, Biochemistry,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
March 2002, Proceedings of the National Academy of Sciences of the United States of America,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
July 1998, Biochimica et biophysica acta,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
November 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
November 1996, Biochimica et biophysica acta,
R A Roffey, and K J van Wijk, and R T Sayre, and S Styring
November 2020, International journal of biological macromolecules,
Copied contents to your clipboard!