Solution structure of an isolated antibody VL domain. 1994

K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543.

The solution structure of the isolated VL domain of the anti-digoxin antibody 26-10 has been determined using data derived from heteronuclear multi-dimensional nuclear magnetic resonance (n.m.r.) experiments. Analytical ultracentrifugation and n.m.r. data demonstrate that the VL domain is only weakly associating (Kd = 2.5 (+/- 0.7) mM) and that it experiences a rapid monomer/dimer equilibrium under the n.m.r. experimental conditions. Therefore, the results reported here represent the first structure determination of an antibody VL domain in the absence of fixed quaternary interactions. The structure determination is based on 930 proton-proton distance constraints, 113 dihedral angle constraints, and 46 hydrogen bond constraints. Eighty initial structures were calculated with the variable target function program DIANA; of these, 31 were accepted on the basis of satisfaction of constraints (no distance constraint violations > 0.5 A; target function < 3.0 A2). Accepted DIANA structures were refined by restrained energy minimization using the X-PLOR program. The 15 best energy-minimized DIANA structures were chosen as a representative ensemble of solution conformations. The average root-mean-square differences (r.m.s.d.) between the individual structures of this ensemble and the mean coordinates is 0.85 (+/- 0.10) A for all backbone atoms and 1.29 (+/- 0.10) A for all heavy atoms. For beta-strands A, B, C, D, E and F, the average backbone atom r.m.s.d. to the mean structure is 0.46 (+/- 0.06) A. A higher-resolution ensemble, with all backbone atom and all heavy atom r.m.s.d.s. to the mean coordinates of 0.54 (+/- 0.08) A and 0.98 (+/- 0.12) A, respectively, was obtained by X-PLOR simulated annealing refinement of the 15 energy-minimized DIANA structures. A detailed analysis of the original ensemble of 15 energy-minimized DIANA structures is presented, as this ensemble retains a broader, and possibly more realistic, sampling of conformation space. The backbone atom and all heavy atom r.m.s.d.s between the mean energy-minimized DIANA structure and the X-ray derived coordinates of the VL domain within the Fab/digoxin complex are 1.05 A and 1.56 A, respectively. Subtle differences between the solution and X-ray structures occur primarily in CDR2, CDR3, beta-strands A, F and G, and localized regions of hydrophobic packing. Overall, these results demonstrate that the 26-10 VL domain conformation is determined primarily by intradomain interactions, and that quaternary VL-VH association induces relatively minor conformational adjustments.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
July 2002, Biochemistry,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
June 1996, Journal of molecular biology,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
October 2008, Acta crystallographica. Section D, Biological crystallography,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
April 2015, Proteins,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
September 2000, Biochemistry. Biokhimiia,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
July 2005, FEBS letters,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
June 1992, Biochemistry,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
July 1993, Journal of molecular biology,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
October 2007, Protein engineering, design & selection : PEDS,
K L Constantine, and M S Friedrichs, and W J Metzler, and M Wittekind, and P Hensley, and L Mueller
July 1985, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!