Characterization of preferred deoxyribonuclease I cleavage sites. 1994

J E Herrera, and J B Chaires
Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505.

The preferred DNase I cleavage sites within the 160 bp tyrT DNA fragment were identified by studying the initial rate of cleavage of individual bonds. The results show that there is no correlation between the rate of cleavage and the identity of the dinucleotide sequence that is cleaved. Examination of the sequences surrounding the seven most rapidly cleaved bonds suggests that an A-T base-pair is preferred at the position three bases to the 5' side of the cleavage site. Preferential cleavage at such sites is consistent with predictions based on the recently obtained high resolution structure of a DNase I-octanucleotide complex. A statistical analysis of 54 additional preferred DNase I cleavage sites, using sequence data taken from published literature, confirms that DNase I exhibits a local sequence preference in addition to its relatively well characterized global structural specificity. Our analysis indicates preferential cleavage at the sequences 5'ATYAT--ATVN, where -- indicates the cleavage site, the notation AT indicates a preference for an A-T base-pair, and V indicates not-T. Comparative kinetic studies of the digestion of three deoxyoctanucleotides by DNase I quantitatively support the sequence preference inferred from the sequence analysis. Poor DNase I cleavage sites were also examined, and found to be characterized by the sequence motif 5'GCRR--TTY. Notably, poor cleavage sites characteristically contain G or C at position -3. While DNase I certainly does not cleave with an absolute sequence specificity, our studies reveal a distinct sequence preference in DNase I cleavage that has heretofore been unappreciated and uncharacterized.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

J E Herrera, and J B Chaires
April 1980, Life sciences,
J E Herrera, and J B Chaires
December 1980, Journal of molecular biology,
J E Herrera, and J B Chaires
January 1978, Cold Spring Harbor symposia on quantitative biology,
J E Herrera, and J B Chaires
February 1999, The Journal of biological chemistry,
J E Herrera, and J B Chaires
January 2005, Nucleic acids research,
J E Herrera, and J B Chaires
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
J E Herrera, and J B Chaires
July 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
J E Herrera, and J B Chaires
April 1984, Biochemistry,
J E Herrera, and J B Chaires
October 1961, Radiation research,
Copied contents to your clipboard!