X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. 1994

T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
Department of Biochemistry, University of Adelaide, Australia.

BACKGROUND X-linked sideroblastic anemia is usually associated with reduced 5-aminolevulinate synthase activity in erythroid cells, and some cases are responsive to treatment with pyridoxine, the precursor to the cofactor of the enzyme. The recently identified gene for an erythroid-specific 5-aminolevulinate synthase isoenzyme and its localization to the X chromosome make it likely that one or more defects in this gene underlie the anemia. METHODS Using a polymorphic dinucleotide-repeat sequence in the erythroid 5-aminolevulinate synthase gene, we confirmed the linkage of this gene to the disorder in a family with X-linked pyridoxine-responsive sideroblastic anemia. We therefore sought evidence of a nucleotide-sequence abnormality in the erythroid 5-aminolevulinate synthase gene by analyzing enzymatically amplified DNA. RESULTS DNA-sequencing studies in two affected males and one carrier female in the kindred demonstrated a cytosine-to-guanine change at nucleotide 1215 (in exon 8). This change results in the substitution of serine for threonine at amino acid residue 388, near the lysine that binds the pyridoxal phosphate cofactor. In expression studies, the activity of the mutant enzyme was reduced relative to that of the wild type, and this reduction was comparable to that in erythroid cells of the proband during relapse of the anemia; the enzyme activity expressed in the presence of pyridoxine was comparable to that in the proband's marrow cells during remission. Although the affinity of the mutant enzyme for pyridoxal phosphate was not altered, the mutation appears to introduce a conformational change at the active site of the enzyme. CONCLUSIONS We identified a point mutation resulting in an amino acid change near the pyridoxal phosphate-binding site of the erythroid 5-aminolevulinate synthase isoenzyme as the underlying defect in a kindred with X-linked pyridoxine-responsive sideroblastic anemia.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D011736 Pyridoxine The 4-methanol form of VITAMIN B 6 which is converted to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. Although pyridoxine and Vitamin B 6 are still frequently used as synonyms, especially by medical researchers, this practice is erroneous and sometimes misleading (EE Snell; Ann NY Acad Sci, vol 585 pg 1, 1990). Pyridoxin,Pyridoxine Hydrochloride,Pyridoxol,Pyridoxol Hydrochloride,Rodex
D004900 Erythroblasts Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts. Erythrocytes, Nucleated,Normoblasts,Proerythroblasts,Pronormoblasts,Erythroblast,Erythrocyte, Nucleated,Normoblast,Nucleated Erythrocyte,Nucleated Erythrocytes,Proerythroblast,Pronormoblast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
July 1993, The Journal of the Florida Medical Association,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
January 2011, Acta haematologica,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
July 1997, Blood,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
March 1994, The New England journal of medicine,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
July 2003, Blood,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
October 1999, American journal of hematology,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
November 1967, Archives of internal medicine,
T C Cox, and S S Bottomley, and J S Wiley, and M J Bawden, and C S Matthews, and B K May
July 1998, European journal of haematology,
Copied contents to your clipboard!