The effect of lattice spacing change on cross-bridge kinetics in rabbit psoas fibers. 1993

Y Zhao, and M Kawai, and J Wray
Department of Anatomy, University of Iowa, Iowa City 52242.

The effect of compression on the elementary steps of the cross-bridge cycle was investigated with the sinusoidal analysis technique and ATP hydrolysis rate measurement. The lattice spacing of rabbit psoas muscle fibers was osmotically compressed with a macromolecule, dextran T-500 (0-16%). The effects of MgATP, MgADP, Pi on exponential processes (B), (C), (D), and isometric tension were studied at different dextran concentrations. The experiments were performed at the saturating Ca concentration (pCa 4.5-4.8), 200 mM ionic strength, pH 7.0, and 20 degrees C. Our results show that the fiber width decreased linearly with an increase in the dextran concentration, and the width measurement was perfectly correlated with the lattice spacing measurement using equatorial x-ray diffraction studies. We find that the nucleotide binding steps, the ATP-isomerization step, and the cross-bridge detachment step were minimally affected by the compression. Our results indicate that the rate constant of the reverse power stroke step (k-4) decreases with mild compression (0-6.3% dextran), presumably because of the stabilization of the attached cross-bridges in the AM*DP state. We also found that the rate constant of the power stroke step (k4) decreases with higher compression (> 6.3% dextran), presumably because of increased difficulty in performing the power stroke reaction. Our results further show that the association constant (K5) of phosphate to cross-bridges is not changed with compression. The ATP hydrolysis rate declined almost linearly with an increase in the dextran concentration. This observation indicates that the rate limiting step is also affected by the lattice spacing change so that the associated rate constant (k6) becomes progressively less with compression.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D016658 Psoas Muscles A powerful flexor of the thigh at the hip joint (psoas major) and a weak flexor of the trunk and lumbar spinal column (psoas minor). Psoas is derived from the Greek "psoa", the plural meaning "muscles of the loin". It is a common site of infection manifesting as abscess (PSOAS ABSCESS). The psoas muscles and their fibers are also used frequently in experiments in muscle physiology. Muscle, Psoas,Muscles, Psoas,Psoas Muscle

Related Publications

Y Zhao, and M Kawai, and J Wray
January 1984, Advances in experimental medicine and biology,
Y Zhao, and M Kawai, and J Wray
March 1979, Biochemistry,
Y Zhao, and M Kawai, and J Wray
February 1999, Biophysical journal,
Y Zhao, and M Kawai, and J Wray
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
Y Zhao, and M Kawai, and J Wray
January 1984, Advances in experimental medicine and biology,
Y Zhao, and M Kawai, and J Wray
March 2021, The Journal of general physiology,
Y Zhao, and M Kawai, and J Wray
November 2000, Investigative ophthalmology & visual science,
Copied contents to your clipboard!