Tension and intracellular calcium transients of activated ferret ventricular muscle in response to step length changes. 1993

Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan.

To elucidate the effects of mechanical constraints on the (Ca2+) affinity of cardiac troponin C, we studied the relationships among the myoplasmic Ca2+ concentration ([Ca2+]i), tension and length in steadily activated intact cardiac muscle. The Ca2+ sensitive photoprotein, aequorin, was micro-injected into cells of ferret right ventricular papillary muscles to monitor the [Ca2+]i. The muscle was then steadily activated with ouabain (10(-4) M)(ouabain contracture) or high frequency stimuli in the presence of ryanodine (5 microM)(tetanic contraction); the tension and aequorin light (AL) transients in response to a step length change were then analyzed. The tension transient response to either the stretch or release in length was oscillatory: tension decreased rapidly during the release and then increased, after which it lapsed into a new steady level in a series of damped oscillations. The opposite was true for the stretch. The oscillatory responses were conspicuous and less damped in the ouabain contracture. The transient AL response was also oscillatory, the time course of which corresponded exactly to that of the tension transient response, though no detectable changes in AL were observed at the initial phase of the stretch response. The increase in AL corresponded exactly to the decrease in tension, likewise the decrease in AL to the increase in tension. The steady level of AL after release was decreased in ouabain contracture, but was increased in tetanic contraction. These results suggest that the Ca2+ affinity of cardiac troponin C is increased with an increase in tension (i.e., the cross-bridge attachment) and decreased with a decrease in tension (i.e., the cross-bridge detachment), and that the myoplasmic calcium concentration is lowered by release, at least in a Ca(2+)-overloaded condition, mainly through the sarcoplasmic reticulum.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000331 Aequorin A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350). Aequorine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.

Related Publications

Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
December 1995, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
February 1987, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
October 1984, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
March 1990, Circulation research,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
December 1983, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
December 1988, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
June 1989, Clinical science (London, England : 1979),
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
July 1986, The Journal of physiology,
Y Saeki, and S Kurihara, and K Hongo, and E Tanaka
June 1982, The Journal of physiology,
Copied contents to your clipboard!