In vitro activities of free and liposomal drugs against Mycobacterium avium-M. intracellulare complex and M. tuberculosis. 1993

R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
Department of Clinical Investigations, University of Texas M. D. Anderson Cancer Center, Houston 77030.

We compared MICs and MBCs of various free- and liposome-incorporated antimicrobial agents against several patient isolates of Mycobacterium avium-M. intracellulare complex and certain American Type Culture Collection strains of M. avium, M. intracellulare, and Mycobacterium tuberculosis. Seven of 19 agents were selected for incorporation into liposomes. The MICs of these agents for 50 and 90% of isolates tested (MIC50s and MIC90s, respectively) ranged from 0.5 to 62 micrograms/ml. Members of the M. avium-M. intracellulare complex were resistant to killing by most of the other agents tested in the free form. However, clofazimine, resorcinomycin A, and PD 117558 showed complete killing of bacteria at concentrations ranging from 8 to 31 micrograms/ml, represented as MBC90s. Among the liposome-incorporated agents, clofazimine and resorcinomycin A had the highest killing effects (MBC90s, 8 and 16 micrograms/ml, respectively). Furthermore, both free and liposome-incorporated clofazimine had equivalent growth-inhibitory and killing effects on all American Type Culture Collection strains of M. avium, M. intracellulare, and M. tuberculosis tested. These results show that the antibacterial activities of certain drugs, particularly those of clofazimine and resorcinomycin, were maintained after the drugs were incorporated into liposomes.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009162 Mycobacterium avium A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
D002569 Cerulenin An epoxydodecadienamide isolated from several species, including ACREMONIUM, Acrocylindrum, and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function. 2,3-Epoxy-4-oxo-7,10-dodecadienoylamide
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D015269 Mycobacterium avium Complex A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs. Battey Bacillus,MAIC,Mycobacterium avium-intracellulare,Mycobacterium avium-intracellulare Complex,Mycobacterium intracellulare,Nocardia intracellularis

Related Publications

R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
December 1990, Kekkaku : [Tuberculosis],
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
June 1999, Antimicrobial agents and chemotherapy,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
July 1984, Antimicrobial agents and chemotherapy,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
January 1988, Annales de l'Institut Pasteur. Microbiology,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
April 1995, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
October 2004, The Journal of antimicrobial chemotherapy,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
May 1987, Diagnostic microbiology and infectious disease,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
December 1990, Tubercle,
R T Mehta, and A Keyhani, and T J McQueen, and B Rosenbaum, and K V Rolston, and J J Tarrand
February 2021, Archivos de bronconeumologia,
Copied contents to your clipboard!