The reconstitution of microtubules from purified calf brain tubulin. 1975

J C Lee, and S N Timasheff

The in vitro reconstitution of calf brain tubulin, purified by the method of Weisenberg et al. [(1968), Biochemistry 7, 4466-4479; (1970), Biochemistry 9, 4110-4116] as modified by Lee et al. [(1973), J. Biol. Chem. 248, 7253-7262], was successful in a medium consisting of 10(-2) M sodium phosphate, 10(-4) M GTP, and concentrations of magnesium ions ranging from 0.5 to 16 X 10(-3) M at 37 degrees. Filaments resembling native microtubules were formed. The filaments are in equilibrium with the associating species of tubulin and the equilibrium can be shifted to depolymerization by lowering the temperature to 20 degrees. Filament formation is inhibited by calcium ions which also cause disassembly of the formed filaments. The effects of calcium ion can be reversed by the addition of [ethylenebis-oxyethylenenitrilo)]tetraacetic acid. The formation of filaments is favored by the presence of 3.4 M glycerol; only twisted abnormal filaments are observed in the presence of 1 M sucrose. The high molecular weight components observed in the sodium dodecyl sulfate polyacrylamide gel electrophoresis patterns of many tubulin preparations were shown not to be essential for the formation of the filaments.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA

Related Publications

J C Lee, and S N Timasheff
January 1982, Methods in enzymology,
J C Lee, and S N Timasheff
October 1981, Archives of biochemistry and biophysics,
J C Lee, and S N Timasheff
January 2017, Methods in molecular biology (Clifton, N.J.),
J C Lee, and S N Timasheff
June 2001, Biochemistry,
J C Lee, and S N Timasheff
December 1975, Journal of cell science,
J C Lee, and S N Timasheff
April 1988, The Journal of cell biology,
J C Lee, and S N Timasheff
August 1979, Biochemical and biophysical research communications,
J C Lee, and S N Timasheff
February 1983, The Journal of biological chemistry,
Copied contents to your clipboard!