Structural differentiation of the Bacillus subtilis 168 cell wall. 1994

L L Graham, and T J Beveridge
Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada.

Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes, and that the wall of exponentially growing B. subtilis cells contains regions of structural differentiation.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

L L Graham, and T J Beveridge
February 1998, Journal of bacteriology,
L L Graham, and T J Beveridge
May 1982, Nucleic acids research,
L L Graham, and T J Beveridge
August 1973, European journal of biochemistry,
L L Graham, and T J Beveridge
September 1998, Journal of bacteriology,
L L Graham, and T J Beveridge
July 2002, Microbiology (Reading, England),
L L Graham, and T J Beveridge
January 2021, Current issues in molecular biology,
L L Graham, and T J Beveridge
April 1987, Molecular & general genetics : MGG,
L L Graham, and T J Beveridge
January 1996, Microbial drug resistance (Larchmont, N.Y.),
Copied contents to your clipboard!