Effects of heat stress on Na+,K(+)-ATPase, Mg(2+)-activated ATPase, and Na(+)-ATPase activities of broiler chickens vital organs. 1994

C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater 74078.

Na+,K(+)-ATPase, Mg(2+)-activated ATPase, and Na(+)-ATPase activities of brain, heart, kidney, and small and large intestinal mucosa of broiler chickens exposed to heat stress (41 degrees C, 65% relative humidity for 6 h) and thermoneutral (25 degrees C, 65% relative humidity) conditions were determined. Brain and kidneys were found to have significantly higher Na+,K(+)-ATPase activities than those of heart and intestinal mucosa. Mg(2+)-activated ATPase and Na(+)-ATPase activities in the intestinal mucosa were higher than those of brain, kidneys, and heart under thermoneutral conditions. While there was a significant inhibition of total ATPase, Na+,K(+)-ATPase, Mg(2+)-activated ATPase, and Na(+)-ATPase activity of small and large intestinal mucosa of broiler chickens exposed to heat stress, the inhibitory effect was limited to total ATPase and Na+,K(+)-ATPase enzymes in kidneys. Heat stress produced a significant increase only in Mg(2+)-activated ATPase activity of the heart, without a remarkable change in all forms of ATPase activity in the brain. Heat stress significantly decreased the ratio of Na+,K(+)-ATPase to Mg(2+)-ATPase in the heart, kidneys, and small and large intestinal mucosa. The percentage of Na(+)-ATPase in Na+,K(+)-ATPase of brain, heart, and kidneys did not significantly change during heat stress, but the ratio in small and large intestinal mucosa increased significantly during heat stress. The severe disturbances in both serum electrolytes and acid-base balance observed in previous heat stress studies could partly be mediated by direct or indirect effects of heat stress on Na+,K(+)-ATPase, Mg(2+)-activated ATPase, and Na(+)-ATPase activities of kidneys, and small and large intestinal mucosa of broiler chickens.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
April 1967, Journal of biochemistry,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
September 1994, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
September 2012, Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
February 1979, Archives of biochemistry and biophysics,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
June 2004, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
January 1975, Ukrains'kyi biokhimichnyi zhurnal,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
April 1985, Pharmacological research communications,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
January 1994, Yao xue xue bao = Acta pharmaceutica Sinica,
C L Chen, and S Sangiah, and H Chen, and J D Roder, and Y Shen
May 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!