The aim of this study was to characterize ion conductances and carrier mechanisms of isolated in vitro perfused rabbit colonic crypts. Crypts were isolated from rabbit colon mucosa and mounted on a pipette system which allowed controlled perfusion of the lumen. In non-stimulated conditions basolateral membrane voltage (Vbl) was -65 +/- 1 mV (n = 240). Bath Ba2+ (1 mmol/l) and verapamil (0.1 mmol/l) depolarized Vbl by 21 +/- 2 mV (n = 7) and 31 +/- 1 (n = 4), respectively. Lowering of bath Cl- concentration hyperpolarized Vbl from -69 +/- 3 to -75 +/- 3 mV (n = 9). Lowering of luminal Cl- concentration did not change Vbl. Basolateral application of loop diuretics (furosemide, piretanide, bumetanide) had no influence on Vbl in non-stimulated crypts. Forskolin (10(-6) mol/l) in the bath depolarized Vbl by 29 +/- 2 mV (n = 54) and decreased luminal membrane resistance. In one-third of the experiments a spontaneous partial repolarization of Vbl was seen in the presence of forskolin. During forskolin-induced depolarization basolateral application of loop diuretics hyperpolarized Vbl significantly and concentration dependently with a potency sequence of bumetanide > piretanide > or = furosemide. Lowering bath Cl- concentration hyperpolarized Vbl. Lowering of luminal Cl- concentration from 120 to 32 mmol/l during forskolin-induced depolarization led to a further depolarization of Vbl by 7 +/- 2 mV (n = 10). We conclude that Vbl of rabbit colonic crypt cells is dominated by a K+ conductance. Stimulation of the cells by forskolin opens a luminal Cl- conductance. Basolateral uptake of Cl- occurs via a basolateral Na+:2Cl-:K+ cotransport system.