ATP-sensitive potassium channels are modulated by intracellular lactate in rabbit ventricular myocytes. 1993

J Han, and I So, and E Y Kim, and Y E Earm
Department of Physiology and Biophysics, College of Medicine, Inje University, Korea.

During myocardial ischemia, increased anaerobic glycolysis results in the accumulation of large amount of intracellular lactate. Effects of lactate on the ATP-sensitive potassium (KATP) channels were examined in rabbit ventricular myocytes, using the inside-out patch-clamp technique. Millimolar concentrations of lactate, applied to the cytosolic side of the patch membrane, induced openings of the KATP channel. This effect was inhibited by 0.1 mM glybenclamide. Lactate-induced openings of the channel were increased in a dose-dependent fashion. In dose-response relation for lactate, Kd (the lactate concentration producing half-maximal activation) and n (Hill coefficient) were 20 mM and 1.3, respectively (n = 5). Activation of KATP channels by lactate occurred even in the presence of 2 mM ATP. Lactate also caused a significant increase in Ki, the ATP concentration causing half-maximal inhibition, from 70 microM in control (n = 7) to 232 microM (n = 5). From the above results it could be concluded that intracellular lactate modulate KATP channels directly and such modulation may resolve the discrepancy between the low Ki in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D019344 Lactic Acid A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed) Lactate,2-Hydroxypropanoic Acid,2-Hydroxypropionic Acid,Ammonium Lactate,D-Lactic Acid,L-Lactic Acid,Propanoic Acid, 2-Hydroxy-, (2R)-,Propanoic Acid, 2-Hydroxy-, (2S)-,Sarcolactic Acid,2 Hydroxypropanoic Acid,2 Hydroxypropionic Acid,D Lactic Acid,L Lactic Acid,Lactate, Ammonium

Related Publications

J Han, and I So, and E Y Kim, and Y E Earm
November 1991, The Journal of clinical investigation,
J Han, and I So, and E Y Kim, and Y E Earm
August 1992, Pediatric research,
J Han, and I So, and E Y Kim, and Y E Earm
February 2002, The Journal of membrane biology,
J Han, and I So, and E Y Kim, and Y E Earm
May 1996, Molecular and cellular biochemistry,
J Han, and I So, and E Y Kim, and Y E Earm
June 2001, The Journal of biological chemistry,
J Han, and I So, and E Y Kim, and Y E Earm
August 2001, Biochemical and biophysical research communications,
J Han, and I So, and E Y Kim, and Y E Earm
February 1996, Biochemical and biophysical research communications,
J Han, and I So, and E Y Kim, and Y E Earm
November 1988, The American journal of physiology,
J Han, and I So, and E Y Kim, and Y E Earm
September 1996, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!