A role for histones H2A/H2B in chromatin folding and transcriptional repression. 1994

J C Hansen, and A P Wolffe
Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284-7760.

Histone octamers or histone H3/H4 tetramers were reconstituted onto either closed circular plasmids containing a single Xenopus 5S rRNA gene or a reiterated array of Lytechinus 5S rRNA genes. All "reconstitutes" were found to undergo both Na(+)-dependent and Mg(2+)-dependent compaction. However, in each case, the compaction of nucleosomal templates containing H2A/H2B was much more extensive than compaction of templates containing only H3/H4 tetramers. Inclusion of 5 mM MgCl2 in the transcription buffer increased the level of compaction of nucleosomal templates and led to a marked inhibition of both transcription initiation and elongation by RNA polymerase III. The inhibitory effect of Mg2+ was reduced significantly when DNA templates contained only H3/H4 tetramers, consistent with their lesser extent of Mg(2+)-dependent compaction. Thus, the removal of histones H2A/H2B from nucleosomal arrays enhances gene activity, in part because of decreased levels of chromatin folding.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D005260 Female Females
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C Hansen, and A P Wolffe
June 1996, Molecular and cellular biology,
J C Hansen, and A P Wolffe
June 1984, FEBS letters,
J C Hansen, and A P Wolffe
September 1984, Biochemistry,
J C Hansen, and A P Wolffe
December 1976, European journal of biochemistry,
J C Hansen, and A P Wolffe
May 2001, Science (New York, N.Y.),
J C Hansen, and A P Wolffe
March 1998, Cellular and molecular life sciences : CMLS,
J C Hansen, and A P Wolffe
January 1984, Biochemistry,
J C Hansen, and A P Wolffe
June 1985, Biochemistry,
Copied contents to your clipboard!