Structural and dynamic properties of the Fv fragment and the single-chain Fv fragment of an antibody in solution investigated by heteronuclear three-dimensional NMR spectroscopy. 1994

C Freund, and A Ross, and A Plückthun, and T A Holak
Max Planck Institute for Biochemistry, Martinsried, FRG.

Fv fragments, heterodimers of the variable light (VL) and variable heavy chain (VH) domains, are the smallest functional antibody units with molecular masses of approximately 26 kDa. The structural and dynamic properties of the Fv fragment and the corresponding single-chain Fv fragment (scFv: VH-linker-VL, 252 amino acids) of the phosphorylcholine-binding antibody McPC603 in the presence of hapten have been studied in solution by heteronuclear multidimensional NMR spectroscopy. Both 15N TOCSY-HMQC and triple-resonance experiments (HNCA and HN(CA)H, with 15N-13C-labeled protein) gave poor spectra, due to short T2 relaxation times for most of the backbone 1H, 15N, and 13C alpha atoms. The assignment procedure therefore relied upon the combination of amino acid and domain (VL) specifically labeled spectra and the 3D NOESY-HMQC spectrum of the uniformly 15N labeled Fv and scFv fragments. Approximately 80% of the 15N and 1H backbone and 60% of the 1H side-chain resonances have been assigned. Short- and long-range NOEs were used to determine the extent of beta-sheet structure and were compared to the X-ray crystallographic data. The 1H-15N NOE data indicate that the scFv backbone has a well-defined structure of limited conformational flexibility. However, the linker of the scFv fragment exhibits substantial fast internal motion (on the picosecond to nanosecond time scale) compared with the overall rotational correlation time of the whole molecule. Several residues in the CDRs, in turns, or at the C-terminal end of the protein have smaller NOEs, reflecting some degree of rapid motion in the protein backbone.

UI MeSH Term Description Entries
D007128 Immunoglobulin Fragments Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques. Antibody Fragment,Antibody Fragments,Ig Fragment,Ig Fragments,Immunoglobulin Fragment,Fragment, Antibody,Fragment, Ig,Fragment, Immunoglobulin,Fragments, Antibody,Fragments, Ig,Fragments, Immunoglobulin
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

C Freund, and A Ross, and A Plückthun, and T A Holak
August 1991, FEBS letters,
C Freund, and A Ross, and A Plückthun, and T A Holak
June 1991, Science (New York, N.Y.),
C Freund, and A Ross, and A Plückthun, and T A Holak
December 1999, Protein science : a publication of the Protein Society,
C Freund, and A Ross, and A Plückthun, and T A Holak
January 1998, Journal of biochemistry,
C Freund, and A Ross, and A Plückthun, and T A Holak
March 1989, Biochemistry,
C Freund, and A Ross, and A Plückthun, and T A Holak
December 1997, Journal of molecular biology,
C Freund, and A Ross, and A Plückthun, and T A Holak
May 1990, Quarterly reviews of biophysics,
C Freund, and A Ross, and A Plückthun, and T A Holak
September 2002, Molecular immunology,
Copied contents to your clipboard!