Gram-negative bacteremia. 1993

S C Schimpff
University of Maryland Medical System, Baltimore 21201.

In the 1960s, almost all patients who developed gram-negative bacteremia during granulocytopenia died; death occurred before blood culture results were available in about 50% of cases; many patients received antibiotics that were, at best, suboptimal and frequently inactive against the invading pathogen. In the early 1970s epidemiological studies demonstrated that more than 50% of gram-negative bacteremias were caused by hospital-acquired strains which colonized along the alimentary canal and caused infection in a limited number of locations, especially the pharynx, lungs, colon, and perianum. Surveillance culture studies have demonstrated that among acquired gram-negative bacilli, Pseudomonas aeruginosa will almost invariably proceed to bacteremia if the patient becomes profoundly neutropenic, with Escherichia coli and Klebsiella pneumoniae leading to bacteremia in only a moderate number of patients and other gram-negative bacilli rarely progressing to bacteremia despite colonization. Hence, the leading causes of bacteremia in the granulocytopenic patient are E. coli, K. pneumoniae and P. aeruginosa. Further investigations demonstrated that gram-negative bacilli were acquired from hands, food, and water, thus leading to approaches to infection prevention which included careful handwashing, low-microbial-content diet, and attention to water sources, including ice machines. Another basic approach to infection prevention has been to suppress gram-negative bacilli colonizing the alimentary canal with oral nonabsorbable antibiotics or, more recently and more effectively, with agents such as the fluoroquinolones which, unlike previous regimens, do not concurrently suppress the anaerobic flora, hence maintaining colonization resistance. The third basic approach to infection prevention is to improve the host defense factors, principally by a more rapid return of circulating granulocytes with the use of colony-stimulating factors such as granulocyte/macrophage colony-stimulating factor or granulocyte colony-stimulating factor. As to therapy, the fundamental approach with presumed gram-negative bacteremia is the prompt institution of empiric antibiotic therapy when fever first develops in the setting of granulocytopenia. There is a short "window of opportunity" after which no therapy will be effective. Combinations of antibiotics such as a beta-lactam and an aminoglycoside are used for multiple reasons: to afford coverage in the event the pathogen, proves resistant to one of the agents, to afford a synergistic activity thus improving and prolonging the serum bactericidal activity, and to reduce the development of resistance. However, patients can be divided into two risk groups: those with granulocytopenia and a regenerating bone marrow and those with an aplastic marrow who will have persistent, profound (< 100 microliters) granulocytopenia.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000380 Agranulocytosis A decrease in the number of GRANULOCYTES; (BASOPHILS; EOSINOPHILS; and NEUTROPHILS). Granulocytopenia,Agranulocytoses,Granulocytopenias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D015996 Survival Rate The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods. Cumulative Survival Rate,Mean Survival Time,Cumulative Survival Rates,Mean Survival Times,Rate, Cumulative Survival,Rate, Survival,Rates, Cumulative Survival,Rates, Survival,Survival Rate, Cumulative,Survival Rates,Survival Rates, Cumulative,Survival Time, Mean,Survival Times, Mean,Time, Mean Survival,Times, Mean Survival
D016470 Bacteremia The presence of viable bacteria circulating in the blood. Fever, chills, tachycardia, and tachypnea are common acute manifestations of bacteremia. The majority of cases are seen in already hospitalized patients, most of whom have underlying diseases or procedures which render their bloodstreams susceptible to invasion. Bacteremias
D016905 Gram-Negative Bacterial Infections Infections caused by bacteria that show up as pink (negative) when treated by the gram-staining method. Bacterial Infections, Gram-Negative,Infections, Gram-Negative Bacterial,Bacterial Infection, Gram-Negative,Gram Negative Bacterial Infections,Gram-Negative Bacterial Infection,Infection, Gram-Negative Bacterial

Related Publications

S C Schimpff
February 1969, The Johns Hopkins medical journal,
S C Schimpff
January 1972, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
S C Schimpff
August 1968, JAMA,
S C Schimpff
December 1973, Disease-a-month : DM,
S C Schimpff
January 1974, Advances in internal medicine,
S C Schimpff
January 2000, Indian journal of pediatrics,
S C Schimpff
January 1969, The Journal of infectious diseases,
S C Schimpff
August 1988, The American journal of medicine,
S C Schimpff
October 1974, The New England journal of medicine,
S C Schimpff
November 1976, JAMA,
Copied contents to your clipboard!