Accounting for the Gregg effect in tetanised coronary arterial pressure-flow relationships. 1994

J Z Livingston, and H R Halperin, and F C Yin
Johns Hopkins University School of Medicine, Baltimore, MD 21205.

OBJECTIVE Myocardial contraction shifts the diastolic coronary pressure-flow relationship to lower flows at any given pressure, the amount of shift being determined primarily by the contractile level. A portion of this shift may be attributable to the Gregg effect. The purpose of this study was to quantify the influence of the Gregg effect and thereby demonstrate the pure effect of activation at a constant contractile level on the pressure-flow relationships. METHODS It was first shown in beating canine interventricular septa that transverse stiffness induced by small high frequency indentations transverse to the plane of the tissue was an index of contractility. At constant perfusion pressure and preload, there was an inverse relationship between peak transverse stiffness and contractile level (induced by graded doses of 2,3-butanedione monoxime) for both isotonic and auxotonic contractions. A Gregg effect was next verified by showing a linear dependence between transverse stiffness and perfusion pressure during ryanodine induced tetanizations. Finally, the relationship between changes in flow and transverse stiffness was determined from diastole to tetany at two contractile levels. These relationships suffice to quantify the Gregg effect. RESULTS Correcting for the Gregg effect from the transverse stiffness measurements obtained concomitantly with previously reported pressure-flow data in six specimens showed the following: using a linear fit to the pressure-flow data, the mean slope of the diastolic pressure-flow relationships decreased from 0.88 to 0.81 and 0.74 ml.min-1 x mmHg-1 during tetanisation at normal and reduced contractile levels, respectively. Correcting for the Gregg effect decreased the tetanised slopes to intermediate values of 0.85 and 0.79 ml.min-1 x mmHg-1, respectively. CONCLUSIONS A small but clearly discernible portion of the shift in tetanised pressure-flow relationships is attributable to the Gregg effect. Similar conclusions pertained when quadratic regressions were fitted to the pressure-flow data.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006346 Heart Septum This structure includes the thin muscular atrial septum between the two HEART ATRIA, and the thick muscular ventricular septum between the two HEART VENTRICLES. Cardiac Septum,Heart Septa,Septa, Heart,Septum, Cardiac,Septum, Heart
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D017725 Ventricular Pressure The pressure within a CARDIAC VENTRICLE. Ventricular pressure waveforms can be measured in the beating heart by catheterization or estimated using imaging techniques (e.g., DOPPLER ECHOCARDIOGRAPHY). The information is useful in evaluating the function of the MYOCARDIUM; CARDIAC VALVES; and PERICARDIUM, particularly with simultaneous measurement of other (e.g., aortic or atrial) pressures. Intraventricular Pressure,Intraventricular Pressures,Pressure, Intraventricular,Pressure, Ventricular,Pressures, Intraventricular,Pressures, Ventricular,Ventricular Pressures

Related Publications

J Z Livingston, and H R Halperin, and F C Yin
January 1993, Advances in experimental medicine and biology,
J Z Livingston, and H R Halperin, and F C Yin
September 1969, Circulation research,
J Z Livingston, and H R Halperin, and F C Yin
January 1978, Bulletin of mathematical biology,
J Z Livingston, and H R Halperin, and F C Yin
December 1977, Annals of biomedical engineering,
J Z Livingston, and H R Halperin, and F C Yin
October 1993, The American journal of physiology,
J Z Livingston, and H R Halperin, and F C Yin
September 1993, The American journal of physiology,
J Z Livingston, and H R Halperin, and F C Yin
July 1969, The American journal of medicine,
J Z Livingston, and H R Halperin, and F C Yin
January 2010, Archivos de cardiologia de Mexico,
J Z Livingston, and H R Halperin, and F C Yin
March 1992, Japanese circulation journal,
Copied contents to your clipboard!