The search for the right partner: homologous pairing and DNA strand exchange proteins in eukaryotes. 1994

W D Heyer
Institute of General Microbiology, Bern, Switzerland.

Finding the right partner is a central problem in homologous recombination. Common to all models for general recombination is a homologous pairing and DNA strand exchange step. In prokaryotes this process has mainly been studied with the RecA protein of Escherichia coli. Two approaches have been used to find homologous pairing and DNA strand exchange proteins in eukaryotes. A biochemical approach has resulted in numerous proteins from various organisms. Almost all of these proteins are biochemically fundamentally different from RecA. The in vivo role of these proteins is largely not understood. A molecular-genetical approach has identified structural homologs to the E. coli RecA protein in the yeast Saccharomyces cerevisiae and subsequently in other organisms including other fungi, mammals, birds, and plants. The biochemistry of the eukaryotic RecA homologs is largely unsolved. For the fungal RecA homologs (S. cerevisiae RAD51, RAD55, RAD57, DMC1; Schizosaccharomyces pombe rad51; Neurospora crassa mei3) a role in homologous recombination and recombinational repair is evident. Besides recombination, homologous pairing proteins might be involved in other cellular processes like chromosome pairing or gene inactivation.

UI MeSH Term Description Entries
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

W D Heyer
January 1994, Annual review of biochemistry,
W D Heyer
April 1994, The Journal of biological chemistry,
W D Heyer
January 1982, Annual review of genetics,
W D Heyer
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
W D Heyer
April 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!